• Title/Summary/Keyword: hardness and strength

Search Result 2,045, Processing Time 0.022 seconds

Influence of Parameters on Adhesion Strength on TiN Film by using R.F. Plasma Assisted Chemical Vapor Deposition (PACVD로 증착된 TiN 박막의 밀착성에 관하여)

  • Shin, Y.S.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1990
  • In this study, TiN film was deposited onto steel by R.F.-PACVD in order to investigate the influence of parameters on the adhesion strength between film and substrate. Experimental results showed that adhesion strength by SAT is different from by optical microscopy. Adhesion strength is increased when the deposition temperature increases and is influenced by R.F. power and electrode distance. Especially heat treatment on the substrate has influenced over the adhesion strength, so it showed the 22 Newtons in adhesion strength by SAT and adhesion strength is decreased when deposition thickeness is thick and hardness is high. Also if the film is thick and high hardness simultaneous, the film was delaminated seriously.

  • PDF

A Study on the Variation of Tensile Strength and Hardness According to the Frequency of Reuse with Chrome-Cobalt Alloy Widely used in the Production of Partial Denture (국부의치 제작에 사용되는 Chrome Cobalt Alloy의 재주조 횟수에 따른 인장강도 및 경도 변화에 대한 실험적 연구)

  • Chung, Kyung-Pung
    • Journal of Technologic Dentistry
    • /
    • v.18 no.1
    • /
    • pp.15-25
    • /
    • 1996
  • This study is to measure and compare the hardness and tensile strength of each time after we recast seven times continually only with and metal alloy Chromium-Cobalt alloy used in the production of partial denture frame work. The result of the experiment were as follow; 1) The result of the hardness measurement The result of the first casting was $490.48{\pm}38.38$ and that of the second recasting was $455.18{\pm}35.61$ and form the third recasting. the result were $518.38{\pm}37.68$ and over. The change of the hardness difference between each recasting was as follow; The hardness difference between the first casting and the second recasting was $35.25{\pm}31.93$ and that between the second recasting and the third recasting was $63.20{\pm}54.02$. There was a statistically significant difference(P<0.01) in the above hardness, however, there was little difference on the whole. And after the third recasting, the hardness grew high a little bit. That is why low-melting metals such as Cr, Mn, Cu of alloy ingredient was evaporated or there was an effect of changes in metal crystal structure, I suppose. 2) The result of the tensile strength measurement. There was a statistically significant difference(P<0.01) between the first casting and the second, the fourth recasting, however. there was little difference in general.

  • PDF

Effects of Thickness, Si and Mn Contents on the Mechanical Properties of 3.3 wt%C-0.1 wt%S Thin-Section Gray Cast Iron (3.3 wt%C-0.1 wt%S 박육 주철의 기계적 성질에 미치는 두께, 규소 및 망간의 영향)

  • Lee, Woo-Jong;Kim, Tae-Hyeong;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.32 no.5
    • /
    • pp.211-218
    • /
    • 2012
  • The effects of thickness, silicon and manganese contents on the mechanical properties of 3.3 wt%C-0.1 wt%S thin-section gray cast iron plates were investigated. The eutectic cell counts and volume fraction of pearlite in the matrix decreased with increased thickness and therefore the strength and hardness decreased with it. Even though the eutectic cell count increased with increased silicon content, the volume fraction of pearlite decreased and the strength and hardness decreased with it. The pearlite was refined more with increased manganese content and therefore the strength and hardness increased with it.

The microstructure and mechanical performance of high strength alloy steel X2M

  • Manigandan, K.;Srivatsan, T.S.;Freborg, A.M.;Quick, T.;Sastry, S.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.283-295
    • /
    • 2014
  • In this paper, the microstructure, hardness, tensile deformation and fracture behavior of high strength alloy steel X2M is presented anddiscussed. The influence of both composition and processing on microstructure of the as-provided material and resultant influence of microstructure, as a function of orientation, on hardness, tensile properties and final fracture behavior is highlighted. The macroscopic mode and intrinsic microscopic features that result from fracture of the steel specimens machined from the two orientations, longitudinal and transverse is discussed. The intrinsic microscopic mechanisms governing quasi-static deformation and final fracture behavior of this high strength steel are outlined in light of the effects oftest specimen orientation, intrinsic microstructural effects and nature of loading.

Mechanical and metallurgical properties of diffusion bonded AA2024 Al and AZ31B Mg

  • Mahendran, G.;Balasubramanian, V.;Senthilvelan, T.
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.147-160
    • /
    • 2012
  • In the present study, diffusion bonding was carried out between AZ31B magnesium and AA2024 aluminium in the temperature range of $405^{\circ}C$ to $475^{\circ}C$ for 15 min to 85 min and 5MPa to 20 MPa uniaxial loads was applied. Interface quality of the joints was assessed by microhardness and shear testing. Also, the bonding interfaces were analyzed by means of optical microscopy, scanning electron microscopy, energy dispersive spectrometer and XRD. The maximum bonding and shear strength was obtained at $440^{\circ}C$, 12 MPa and 70 min. The maximum hardness values were obtained from the area next to the interface in magnesium side of the joint. The hardness values were found to decrease with increasing distance from the interface in magnesium side while it remained constant in aluminium side. It was seen that the diffusion transition zone near the interface consists of various phases of $MgAl_2O_4$, $Mg_2SiO_4$ and $Al_2SiO_5$.

Comparison of Mechanical Properties of Zirconia Copping by multi-layered zirconia blocks and Design locations (다층 지르코니아 블록 종류와 설계위치에 따른 지르코니아 코핑의 기계적 특성 비교)

  • Kang, Jae-Min;Kim, Won-Young;Chung, In-Sung;Jeon, Byung-Wook
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.167-175
    • /
    • 2019
  • Purpose: This study was investigated the effect of multi-layer zirconia block type and design location on the mechanical properties of zirconia copings. Methods: Three kinds of multi-layered zirconia blocks (Snow princess multi layered block, Multi cherry, Dental zirconia pre-shaded blank) were used to identify the effects of the kinds of multi-layered zirconia blocks, design locations on mechanical characteristics of zirconia copings. 150 Zirconia copings were fabricated and fracture strength, hardness and microstructure were compared and evaluated. Results: Dental zirconia pre-shaded blank(2,256.9N) had the highest fracture strength of zirconia copings on all the design locations, and it was followed by Snow princess multi layered block(2,107.5N) and Multi cherry(917.0N). Snow princess multi layered block(1,949.7Hv) had the highest hardness of zirconia copings on all the design locations, and it was followed by Dental zirconia pre-shaded blank(1,671.7Hv) and Multi cherry(1,383.7Hv). The cervical layer had the highest fracture strength and hardness of zirconia copings in all the blocks, and it was followed by the cervical+gradation layer, the enamel layer, the enamel+gradation layer, and the gradation layer. Conclusion: It was found that the fracture strength and hardness were different according to the kinds of multilayer zirconia block and design location, and it was confirmed that it is lower than the fracture strength of white zirconia.

The Influence of TiB2 Particle on the Mechanical Property of Cu-TiB2 Composites (Cu-TiB2 복합재료의 기계적 성질에 미치는 TiB2 입자의 영향)

  • Kang Kae-Myung;Choi Jong Un
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.73-77
    • /
    • 2004
  • The mechanical and electrical properties of $Cu-TiB_2$ composites prepared by hot extrusion and cold drawing according to the variation of $TiB_2$ contents and the size of $TiB_2$ particle have been studied. The experimental results showed that the electrical conductivity was decreased with increasing the $TiB_2$ content, and their tensile strength and hardness increased inversely. In the case of the same content of $TiB_2$ particle, the smaller $TiB_2$ particle, the higher their mechanical properties. The electrical conductivity of $Cu-TiB_2$ composites showed more than 70%IACS. Their yield strength and hardness were more than 120 MPa and HRB 60~70, respectively.

Influence of Heat Treatment on the Mechanical Properties in Various Weld Zone of the Structural Alloy Steel (구조용(構造用) 합금강(合金鋼) 용접(熔接) 각부위(各部位)의 열처리(熱處理)에 따른 기계적(機械的) 성질(性質) 변화(變化)에 관(関)한 실험적(實驗的) 연구(硏究))

  • Sim, Sang Woo;Lee, Seung Kyu;Min, Young Bong
    • Journal of Biosystems Engineering
    • /
    • v.10 no.1
    • /
    • pp.76-82
    • /
    • 1985
  • To investigate the influence of annealing heat treatment on the mechanical properties at the various weld zone, an experimental study was performed for the structural alloy steel. The results obtained from the experimental works are as follows: 1. Hardness and tensile strength showed the highest value at the heat affected zone, which was 5mm apart from bond zone. With increasing of annealing temperature, hardness and tensile strength were decreased at every weld zone, and bound in heat affected zone was increased. 2. Impact strength was the highest at the filler metal, and increased with increment of annealing temperature at filler metal and base metal. However, both at bond and heat affected zones, impact strength was increased from $700^{\circ}C$ of annealing temperature, and was decreased again over $900^{\circ}C$. 3. Mutual relationship between the mechanical properties at filler and base metals showed a similar linearty to that the common structural steel did. However, it varied unsteadly both at bond and heat affected zones. 4. It may be concluded that proper annealing temperature is $700^{\circ}C$ from the viewpoint of hardness, tensile and impact strength.

  • PDF

Strength Characteristics of FRP Composite Materials for Ship Structure (선체구조용 FRP 복합재료의 강도 특성)

  • Choi, Han-Kyu;Nam, Ki-Woo;Ahn, Seok-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.45-54
    • /
    • 2013
  • In this study, various types of composite materials and adhesives that are actually used in the shipbuilding field for small ships, leisure boats, and fishing boats were applied in the hand lay-up method and vacuum infusion method to manufacture specimens. Then the tensile strength, tensile modulus, flexural strength, and flexural modulus values of these specimens were obtained. In addition, the barcol hardness and fiber content were obtained from the specimens. The results showed that the strengths of the specimens manufactured using the vacuum infusion method were higher than those manufactured using the hand lay-up method. Moreover, the barcol hardness and fiber content were also higher in those manufactured using the vacuum infusion method. The specimens manufactured using the vacuum infusion method were thinner despite their large fiber content.

Fabrication and Characteristics of SiCp/AC8A Composites by Pressureless Metal Infiltration Process (무가압함침법에 의한 SiCp/AC8A 복합재료의 제조 및 특성)

  • 김재동;고성위
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.139-142
    • /
    • 2000
  • The SiCp/AC8A composites were fabricated by the pressureless metal infiltration process successfully. The effect of additional Mg, which were mixed with SiC particles to promote interfacial wetting between the reinforcement and matrix alloy, and particle size on the mechanical properties was investigated. By increasing the additional Mg content the hardness of SiCp/AC8A composites was increased due to the hard reaction products, but the bending strength was decreased by the excess reaction of Mg and high porosity level when the additional Mg content is over 7%. The Hardness and bending strength was increased by decreasing the size of SiC particle.

  • PDF