• Title/Summary/Keyword: hardening model

Search Result 567, Processing Time 0.031 seconds

An Anisotropic Elasto-Plastic Constitutive Model Based on the Generalized Isotropic Hardening Rule for Clays (일반 등방경화규칙에 의거한 점토의 비등방 탄소성 구성모델)

  • 이승래;오세붕
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.17-32
    • /
    • 1994
  • To model the anisotropic behavior of soils in the case of reverse loading, an anisotropic hardening description is proposed on the basis of generalized isotropic hardening(GIH) rule. There is a core of the GIH rule in the allowance of the concept that the center of homology of isotropic hardening can be any proper stress states inside a yield surface. The plastic deformations could be represented for the condition of reverse loading, and an explicit constitutive relationship was formulated by utilizing a simple hardening function. The proposed hardening description has been compared with other anisotropic hardening models. For verification three sets of triaxial test results have been predicted for the drained and undrained behavior of overconsolidated clays and Ko consolidated clays.

  • PDF

A Study on the Effect of Beam Mode on the Size of Hardened Zone in Laser Surface Hardening (레이저 표면경화처리에서 빔의 형태가 경화층 크기에 미치는 영향에 관한 연구)

  • Kim, J.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.64-72
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaussian mode of beam. Then the model for rectagular beam was used for the predicition of the size of hardened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters such as beam mode, beam size, and traverse speed.

  • PDF

Selection of the Optimal Finite Element Type by Material Hardening Behavior Model in Elbow Specimen (엘보우 시편에서의 재료 경화 거동 모델에 따른 최적의 유한 요소 선정)

  • Heo, Eun Ju;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.84-91
    • /
    • 2017
  • This paper is proposed to select the optimal finite element type in finite element analysis. Based on the NUREG reports, static analyses were performed using a commercial analysis program, $ABAQUS^{TM}$. In this study, we used a nonlinear kinematic hardening model proposed by Chaboche. The analysis result of solid elements by inputting the same material constants was different from the results of the NUREG report. This is resulted from the difference between shell element and solid element. Therefore, the material constants that have similar result to the experimental result were determined and compared according to element type. In case of using solid element for efficient finite element analysis, we confirmed that the use of C3D8I element type(incompatible mode 8-node linear brick element) leads the accurate result while reducing the analysis time.

Evaluation of the true-strength characteristics for isotropic materials using ring tensile test

  • Frolov, A.S.;Fedotov, I.V.;Gurovich, B.A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2323-2333
    • /
    • 2021
  • The paper proposes a technique for reconstructing the true hardening curve of isotropic materials from ring tensile tests. Neutron irradiated 42XNM alloy tensile properties were investigated. The calculation of the true hardening curve for tensile and compression tests of standard cylindrical samples was performed at the first step. After that, the FEM-model was developed and validated using the ring tension and compression tests (with the hardening curve defined in step 1). Finally, the true hardening curve was calculated by selecting the FEM-model parameters and its validation by ring sample tests in different states using an iterative method. For these samples, experimental and calculated gauge length values were obtained, and the corresponding material's constants were estimated.

Ratcheting assessment of austenitic steel samples at room and elevated temperatures through use of Ahmadzadeh-Varvani Hardening rule

  • Xiaohui Chen;Lang Lang;Hongru Liu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.601-614
    • /
    • 2023
  • In this study, the uniaxial ratcheting effect of Z2CND18.12N austenitic stainless steel at room and elevated temperatures is firstly simulated based on the Ahmadzadeh-Varvani hardening rule (A-V model), which is embedded into the finite element software ABAQUS by writing the user material subroutine UMAT. The results show that the predicted results of A-V model are lower than the experimental data, and the A-V model is difficult to control ratcheting strain rate. In order to improve the predictive ability of the A-V model, the parameter γ2 of the A-V model is modified using the isotropic hardening criterion, and the extended A-V model is proposed. Comparing the predicted results of the above two models with the experimental data, it is shown that the prediction results of the extended A-V model are in good agreement with the experimental data.

Process Optimal Design in Steady-State Meta Forming considering Strain-Hardening (변형률 경화를 고려한 정상상태 소성가공 공정의 공정 최적설계)

  • 황숭무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.40-43
    • /
    • 2000
  • A process optimal design methodology applicable to steady-state forming with a strain-hardening material is presented. in this approach the optimal design problem is formulated on the basis of a rigid-viscoplastic finite element process model and a derivative based approach is adopted as an optimization technique The process model the schemes for the evaluation of the design sensitivity considering the effect of strain-hardening and an iterative procedure for design optimization are described. the validity of the proposed approach is demonstrated through application to die shape optimal design in extrusion.

  • PDF

Spring-back Prediction of MS1470 Steel Sheets Based on a Non-linear Kinematic Hardening Model (이동경화 모델에 기반한 MS1470 강판의 스프링백 예측)

  • Park, S.C.;Park, T.;Koh, Y.;Seok, D.Y.;Kuwabara, T.;Noma, N.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.303-309
    • /
    • 2013
  • Spring-back of MS1470 steel sheets was numerically predicted using a non-linear kinematic hardening material behavior based on the Yoshida-Uemori model. From uniaxial tension and uniaxial tension-compression-tension data as well as the uniaxial tension-unloading-tension data, the parameters of the Yoshida-Uemori model were obtained. For the numerical simulations, the Yoshida-Uemori model was implemented into the commercial finite element program, ABAQUS/Explicit and ABAQUS/Standard using the user-defined material subroutines. The model performance was validated against the measured spring-back from the benchmark problems of NUMISHEET 2008 and NUMISHEET 2011, the 2-D draw bending test and the S-rail forming test, respectively.

Undrained Analysis of Soft Clays Using an Anisotropic Hardening Constitutive Model: II. Numerical Analysis (비등방경화 구성모델을 적용한 연약 지반의 비배수 거동 해석 : II. 수치해석)

  • 오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.131-142
    • /
    • 1999
  • The objective of this study is to perform finite element analyses using the anisotropic hardening constitutive model on the basis of the total stress concept. An anisotropic hardening constitutive model had been developed in a companion paper, and was then formulated by implicit stress integration and consistent tangent moduli. A nonlinear finite element analysis program was coded including the algorithm, and as a result, the nonlinear solution was accurately calculated and converged to be asymptotically quadratic. In the analysis of a test embankment it was found that the proposed model could predict the displacement of soils more reasonably than the analysis with von Mises type model. In addition the proposed model could predict accurately the actual behavior through the reanalysis of the problem by a reasonable evaluation of the strength parameter.

  • PDF

Numerical modeling of soil nail walls considering Mohr Coulomb, hardening soil and hardening soil with small-strain stiffness effect models

  • Ardakani, Alireza;Bayat, Mahdi;Javanmard, Mehran
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.391-401
    • /
    • 2014
  • In an attempt to make a numerical modeling of the nailed walls with a view to assess the stability has been used. A convenient modeling which can provide answers to nearly situ conditions is of particular significance and can significantly reduce operating costs and avoid the risks arising from inefficient design. In the present study, a nailing system with a excavation depth of 8 meters has been modeled and observed by using the three constitutive behavioral methods; Mohr Coulomb (MC), hardening soil (HS) and hardening soil model with Small-Strain stiffness ensued from small strains (HSS). There is a little difference between factor of safety and the forces predicted by the three models. As extremely small lateral deformations exert effect on stability and the overall deformation of a system, the application of advanced soil model is essential. Likewise, behavioral models such as HS and HSS realize lower amounts of the heave of excavation bed and lateral deformation than MC model.

A Prediction of Behavior of Compacted Granite Soils Based on the Elasto-Plastic Constitutive Model (탄,소성 구성모델을 이용한 다짐화강토의 응력-변형률 거동예측)

  • 이강일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.148-158
    • /
    • 1998
  • The aims of this study are to evaluate the application on the stress-strain behavior of granite Soil using Lade's double work hardening constitutive model based on the theories of elasticity and plasticity. From two different sites of construction work, two disturbed and compacted weathered granite samples which are different in partical size and degree of weathering respectively were obtained. The specimen employed were sampled at Iksan and Pochon in order to predict the constitutive model. Using the computer program based on the regression analysis, 11 soil parameters for the model were determined from the simple tests such as an isotropic compression-expansion test and a series of drained conventional triaxial tests. In conclusion, it is shown that Lade's double work hardening model gives the good applicability for processing of stress-strain, work-hardening, work-softening and soil dilatancy. Therefore, this model in its present form is applicable to the compacted decomposed granite soil.

  • PDF