• Title/Summary/Keyword: hardening effect

Search Result 752, Processing Time 0.032 seconds

A Study on the Optimal Mixture Ratio for Stabilization of Surface Layer on Ultra-soft Marine Clay (초연약 해성점토의 표층고화처리를 위한 최적배합에 관한 연구)

  • 천병식;고경환;김진춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.33-43
    • /
    • 2002
  • Recently, as large constructions on the coast increase, an application of a surface layer stabilization method which is one of the improvement methods for dredged soft clay has increased. However, there are few studies about this. The purpose of this study is clarifying characteristics of ultra-soft marine clay and hardening agent. Also, it is verifying an optimal mixture ratio of hardening agent through the laboratory tests according to designed experiments and proving by statistical analysis and pilot tests. Laboratory tests were performed with proper hardening agent and test soil in accordance with the design of experiments. Regression equations between hardening agents materials and unconfined compressive strength were derived from the tests. The applicability of regression equations were also verified by pilot tests. From the test results, it was found that hardening agent materials(cement, slag, fly-ash, inorganic salts, arwin, gypsum etc.) have some effect upon compressive strength. The optimal mixture ratio which satisfies the required compressive strength was derived from the statistical analysis. The effect of ground improvement by cements and hardening agents was confirmed through the pilot tests. This study will suggest data for design or construction criteria of stabilization of surface layer on ultra-soft marine clay.

Effect of Zona Hardening on In Vitro Fertilization in Mouse Oocytes II. Analysis of Materials Causing Zona Hardening (생쥐난자에 있어서 투명대 경화현상이 체외수정에 미치는 영향 II. 투명대 경화 현상을 유도하는 원인물질의 구명)

  • 이상진;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.3
    • /
    • pp.173-181
    • /
    • 1993
  • In order to demonstrate whether ovoperoxidase hardens the zona of oocytes activated by incubating in M-S buffer supplemented with 20$\mu$M of Ca-ionophore A 23187, the effect of peroxidase inhibitors(250mM pheylhydrazine, 28mM sodilum sulfite, 350mM glycine ethyl ester and 50mM sodium azide), tyrosine analogue(12.5mM tyramine) and exogeneous peroxidase(50$\mu\textrm{g}$/ml horseradishperoxidase ; HRP) on zona hardening in ionorphore-treated oocytes were investigated. The results obtained from thses experiments were summarized as follows : 1. The zona solubility (t50) of ionophore-activated and DMSO-treated oocytes at 1, 2 and 3 hr of culture were 25.0, 31.6 and 40.6min., and 9.7, 10.8 and 15.5 min., respectively. The longest time required for zona lysis of ionophore activated oocytes at 1 hr after onset of ionophore treatment. The diferences int50 for zona was significantly greater as compared to DMSO-treated controls(P<0.01). 2. The inhibition rates of hardening in the oocytes treated with the phenylhydrazine, sodium sulfite, glycine ethyl ester and sodium azide, were 23.8, 61.9, 95.2 and 23.8%l, respectively, and the tyramine, was 14.3%. Several known peroxidase inhibitors and tyrosine analogue were blocked zona hardening in ionophore activated oocytes. 3. The treatment of exogeneous peroxidase promoted the zona hardening of activated oocytes but not unactivated oocytes. These resuls indicate that the ovoperoxidase apparently catalyzes the hardening of the zona following ionophore activation of mouse oocytes.

  • PDF

Microscopic Investigation of the Strain Rate Hardening for Polycrystalline Metals (철강재료 변형률속도 경화의 미시적 관찰)

  • Yoon, J.H.;Park, C.G.;Kang, J.S.;Suh, J.H.;Huh, M.Y.;Kang, H.G.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2008
  • Polycrystalline materials such as steels(BCC) and aluminum alloys(FCC) show the strain hardening and the strain rate hardening during the plastic deformation. The strain hardening is induced by deformation resistance of dislocation glide on some crystallographic systems and increase of the dislocation density on grain boundaries or inner grain. However, the phenomenon of the strain rate hardening is not demonstrated distinctly in the rage of $10^{-2}$ to $10^2/sec$ strain rate. In this paper, tensile tests for various strain rates are performed in the rage of $10^{-2}$ to $10^2/sec$ then, specimens are extracted on the same strain position to investigate the microscopic behavior of deformed materials. The extracted specimens are investigated by using the electron backscattered diffraction(EBSD) and transmission electron microscopy(TEM) results which show the effect of texture orientation, grain size and dislocation behavior on the strain rate hardening.

A Study on the Optimal Mixture Ratio for Stabilization of Surface Layer on Ultra-soft Marine Clay (초연약 해성점토의 표층고화처리를 위한 최적배합에 관한 연구)

  • 천병식;고경환;김진춘;한유찬;문성우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.731-738
    • /
    • 2002
  • Recently, as large constructions on the coast are performed frequently, surface layer stabilization method which Is one of the improvement methods for dredged soft clay has been applied. However, there have been few studies about the surface layer stabilization method. The purpose of this study is to clarify characteristics of ultra-soft marine clay and hardening agent. Also, optimal mixture ratio of hardening agent was verified through the laboratory tests such as statistical analysis and pilot tests. Laboratory tests were performed with proper hardening agent and test soil and standard mixing tables of hardening agent were determined according to ground conditions through statistical analysis. Also, applicability of surface layer stabilization method to field was verified by pilot tests. From the results of the tests, it was found that hardening agent materials such as cement, slag, fly-ash, inorganic salts, arwin, gypsum etc. affect on the appearing compressive strength. It was defined optimal mixture ratio which satisfies the required compressive strength from the statistical analysis. Also, It was compared the effect of ground improvement by cements and hardening agents through the pilot tests. This study will serve as data for design or construction criteria of stabilization of surface layer on ultra-soft marine clay.

  • PDF

Effects of strain hardening of steel reinforcement on flexural strength and ductility of concrete beams

  • Ho, J.C.M.;Au, F.T.K.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.185-198
    • /
    • 2005
  • In the design of reinforced concrete beams, it is a standard practice to use the yield stress of the steel reinforcement for the evaluation of the flexural strength. However, because of strain hardening, the tensile strength of the steel reinforcement is often substantially higher than the yield stress. Thus, it is a common belief that the actual flexural strength should be higher than the theoretical flexural strength evaluated with strain hardening ignored. The possible increase in flexural strength due to strain hardening is a two-edge sword. In some cases, it may be treated as strength reserve contributing to extra safety. In other cases, it could lead to greater shear demand causing brittle shear failure of the beam or unexpected greater capacity of the beam causing violation of the strong column-weak beam design philosophy. Strain hardening may also have certain effect on the flexural ductility. In this paper, the effects of strain hardening on the post-peak flexural behaviour, particularly the flexural strength and ductility, of reinforced normal- and high-strength concrete beams are studied. The results reveal that the effects of strain hardening could be quite significant when the tension steel ratio is relatively small.

Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers

  • Karimpour, Hossein;Mazloom, Moosa
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.575-589
    • /
    • 2022
  • In order to enhance the greenness in the strain-hardening composites and to reduce the high cost of typical polyvinyl alcohol fiber reinforced engineered cementitious composite (PVA-ECC), an affordable strain-hardening composite with green binder content has been proposed. For optimizing the strain-hardening behavior of cementitious composites, this paper investigates the effects of polypropylene fibers on the first cracking strength, fracture properties, and micromechanical parameters of cementitious composites. For this purpose, digital image correlation (DIC) technique was utilized to monitor crack propagation. In addition, to have an in-depth understanding of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. To understand the effect of fibers on the strain hardening behavior of cementitious composites, ten mixes were designed with the variables of fiber length and volume. To investigate the micromechanical parameters from fracture tests on notched beam specimens, a novel technique has been suggested. In this regard, mechanical and fracture tests were carried out, and the results have been discussed utilizing both fracture and micromechanical concepts. This study shows that the fiber length and volume have optimal values; therefore, using fibers without considering the optimal values has negative effects on the strain-hardening behavior of cementitious composites.

A Study on the Effect of Beam Mode on the Size of Hardened Zone in Laser Surface Hardening (레이저 표면경화처리에서 빔의 형태가 경화층 크기에 미치는 영향에 관한 연구)

  • Kim, J.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.64-72
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaussian mode of beam. Then the model for rectagular beam was used for the predicition of the size of hardened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters such as beam mode, beam size, and traverse speed.

  • PDF

The influence of Jelly strength and Hardening agent on microcapsules by complex coacervation (복합상분리법에 의한 마이크로캡슐 제조 -젤리강도 및 경화제에 따른 특성변화-)

  • 김혜림;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.9_10
    • /
    • pp.1172-1177
    • /
    • 2003
  • Microcapsules were prepared by complex coacervation between gelatin and gum arabic. The object of this work is evaluation of the effect of jelly strength, hardening agent on the particle size distribution, surface morphology and DSC. It was found that the 300bloom jelly strength caused microcapsules' size larger. When the amount of hardening agent increased, the particle mean diameter was larger. The amount of hardening agent was determined to be 10m1 for getting suitable size to finish the fabric.

A Behavior Analysis of HSR concrete slab track under Variety of Rail pad stiffness on fatigue effect (피로효과를 고려한 레일패드 스프링계수 변화에 따른 콘크리트 슬래브 궤도의 거동분석)

  • Eom, Mac;Choi, Jung-Youl;Chun, Dae-Sung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.340-350
    • /
    • 2007
  • The major objective of this study is to investigate the fatigue effects of rail pad on High Speed Railway with concrete slab track system. It analyzed the mechanical behaviors of HSR concrete slab track with applying rail pad stiffness based on fatigue effect(hardening and increasing stiffness) on the 3-dimensional FE analysis and laboratory test for static & dynamic characteristics. As a result, the hardening of rail pad due to fatigue loading condition are negative effect for the static & dynamic response of concrete slab track which is before act on fatigue effect. The analytical and experimental study are carried out to investigate rail pad on fatigue effected increase vertical acceleration and stress and decrease suitable deflection on slab track. And rail pad based on fatigue effect induced dynamic maximum stresses, the increase of damage of slab track is predicted by adopting fatigue effected rail pad. after due consideration The servicing HSR concrete slab track with resilient track system has need of the reasonable determination after due consideration fatigue effect of rail pad stiffness which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

The Synthesis of Hardener for Photography and Hardening Test (사진용 경막제의 합성과 경막시험)

  • Kim, Yeoung-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.33-37
    • /
    • 1998
  • The hardening test of gelatin with 2,4-dichloro-6-hydroxy-1,3,5-triazine mono sodium salt was studied at pH 5, 7, 8 and about increasing temperature, respectively. The hardener was prepared by the reaction of cyanuric chloride with sodium hydroxide, disodium hydrogenphosphate-12-water and trisodium phosphate-12-water in the presence of water. The product was identified by elemental analyzer. IR spectrophotometer. Novel hardener can be used in photographic emulsion and showed very good hardening effect.