• Title/Summary/Keyword: hardened properties

Search Result 558, Processing Time 0.025 seconds

Self-Consolidating Concrete Incorporating High Volume of Fly Ash, Slag, and Recycled Asphalt Pavement

  • Mahmoud, Enad;Ibrahim, Ahmed;El-Chabib, Hassan;Patibandla, Varun Chowdary
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • The use of sustainable technologies such as supplementary cementitious materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is imperative to qualify and implement such mixtures in practice, if the required specifications of their intended application are met. This paper presents the results of a laboratory investigation of self-consolidating concrete (SCC) containing sustainable technologies. Twelve mixes were prepared with different combinations of fly ash, slag, and recycled asphalt pavement (RAP). Fresh and hardened concrete properties were measured, as expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. The addition of RAP to mixes showed a consistent effect, with a drop in strength after 3, 14, and 28 days as the RAP content increased from 0 to 50 %. However, most of the mixes satisfied SCC fresh properties requirements, including mixes with up to 50 % RAP. Moreover, several mixes satisfied compressive strength requirement for pavements and bridges, those mixes included relatively high percentages of SCMs and RAP.

An Experimental Study on the Properties of Fresh and Hardened Ready Mixed Concrete Using EEZ sand and Crush sand (EEZ모래와 부순모래를 사용한 레미콘의 굳지않은 성상 및 경화성상에 관한 연구)

  • Shin Seung-Bong;Koo Kyung-Mo;Na Chul-Sung;Ryu Jae-Chul;Kim Gyu-Yong;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.53-56
    • /
    • 2006
  • Recently, trouble of sand supplying is occurred according to exhaustion of natural sand resources. Therefore various measures are proposed for solution of trouble of sand supply and crushed sand among measures is used as one of most universal measures. But because crushed sand have poor particle shape and plenty of makes micro particle, the quality of concrete using crushed sand deteriorated. Therefore, this study evaluated engineering property of concrete with replacement ratio of crushed sand and EEZ sand and applied evaluation result to fundamental data for quality control of concrete using crushed sand and EEZ sand. The result of this study have shown that quality of concrete using crushed sand and EEZ sand and The compressive strength of concrete up to 50, 70% EEZ sand replacement by crush sand, nearly equal to that of general sand.

  • PDF

Plastic viscosity based mix design of self-compacting concrete with crushed rock fines

  • Kalyana Rama, JS;Sivakumar, MVN;Vasan, A;Kubair, Sai;Ramachandra Murthy, A
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.461-468
    • /
    • 2017
  • With the increasing demand in the production of concrete, there is a need for adopting a feasible, economical and sustainable technique to fulfill practical requirements. Self-Compacting Concrete (SCC) is one such technique which addresses the concrete industry in providing eco-friendly and cost effective concrete. The objective of the present study is to develop a mix design for SCC with Crushed Rock Fines (CRF) as fine aggregate based on the plastic viscosity of the mix and validate the same for its fresh and hardened properties. Effect of plastic viscosity on the fresh and hardened properties of SCC is also addressed in the present study. SCC mixes are made with binary and ternary blends of Fly Ash (FA) and Ground Granulated Blast Slag (GGBS) with varying percentages as a partial replacement to Ordinary Portland Cement (OPC). The proposed mix design is validated successfully with the experimental investigations. The results obtained, indicated that the fresh properties are best achieved for SCC mix with ternary blend followed by binary blend with GGBS, Fly Ash and mix with pure OPC. It is also observed that the replacement of sand with 100% CRF resulted in a workable and cohesive mix.

Mix design and early-age mechanical properties of ultra-high performance concrete

  • Tang, Chao-Wei
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.335-345
    • /
    • 2021
  • It is known from the literature that there are relatively few studies on the engineering properties of ultra-high performance concrete (UHPC) in early age. In fact, in order to ensure the safety of UHPC during construction and sufficient durability and long-term performance, it is necessary to explore the early behavior of UHPC. The test parameters (test control factors) investigated included the percentage of cement replaced by silica fume (SF), the percentage of cement replaced by ultra-fine silica powder (SFP), the amount of steel fiber (volume percent), and the amount of polypropylene fiber (volume percentage). The engineering properties of UHPC in the fresh mixing stage and at the age of 7 days were investigated. These properties include freshly mixed properties (slump, slump flow, and unit weight) and hardened mechanical properties (compressive strength, elastic modulus, flexural strength, and splitting tensile strength). Moreover, the effects of the experimental factors on the performance of the tested UHPC were evaluated by range analysis and variance analysis. The experiment results showed that the compressive strength of the C8 mix at the age of 7 days was highest of 111.5 MPa, and the compressive strength of the C1 mix at the age of 28 days was the highest of 128.1 MPa. In addition, the 28-day compressive strength in each experimental group increased by 13%-34% compared to the 7-day compressive strength. In terms of hardened mechanical properties, the performance of each experimental group was superior to that of the control group (without fiber and without additional binder materials), with considerable improvement, and the experimental group did not produce explosive or brittle damage after the test. Further, the flexural test process found that all test specimens exhibited deflection-hardening behavior, resulting in continued to increase carrying capacity after the first crack.

The Effect on the Properties of Recycled Aggregate Mortar with the Qualites of Waste Concrete (페콘크리트의 품질이 재생모니터의 특성에 미치는 영향)

  • 김효구;김기철;신동인;한천구;박복만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.392-397
    • /
    • 1998
  • In this paper, the properties of cement mortar used recycled aggregate are analyzed and compared with river and crushed sand mortar. Recycled aggregates are made by crushing wasted concrete had various compressive strength, and test items are the properties of fresh mortar, hardened mortar and durability. According to the experimental results, flow, unitweight, strength and durability of cement mortar used recycled aggregates decrease compared with those of river and crushed sand mortar.

  • PDF

An Experimental Study on the Fluidity Performance and Engineering Properties of Crushed Stone Concrete Using Superplasticizers (고성능 감수제를 사용한 쇄석 콘크리트의 유동화 성능 및 공학적 특성에 관한 연구)

  • 송하영;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.16-19
    • /
    • 1990
  • The effect of superplasticizers on the fluidity performance in fresh concrete and physical properties in hardened concrete have been analyzed and investigated under mix proportions of water cement ratio of 0.4, 0.6, crushed stone aggregates, and addition rates of superplasticizers of 0.0, 0.5, 1.0 and 1.5 in the practical range. It is the aim of this study to provide the fundamental data on the workability improvement and engineering properties of crushed stone concrete using superplasticizers comparing with conventional concrete for the practical use and research data accumulation of superplastized concrete.

  • PDF

An experimental study on the adhesive properties of the top coated materials for concrete slab (콘크리트 슬래브 마감재료의 계면부착 거동에 관한 실험적 연구)

  • 이종열;손형호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.273-277
    • /
    • 1995
  • This study presents the physical and adhesive properties of the top coated materials for concrete slab. i.e, cement based top coated materials. epoxy mortar. The purpose of this study offers the investigation of construction factors to affect the quality of the coated materials over hardened concrete. The experimental results shows that the water content 3% of sand decline the strength and adhesive properties of epoxy mortar, on the other hand, dry surface and curing for cement based material.

  • PDF

Pore Structure Changes in Hardened Cement Paste Exposed to Elevated Temperature (고온 환경에 노출된 시멘트 경화체의 공극 구조 변화)

  • Kang, Seung-Min;Na, Seung-Hyun;Kim, Kyung-Nam;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.48-55
    • /
    • 2015
  • Hardened cement-based materials exposed to the high temperatures of a fire are known to experience change in the pore structure as well as microstructural changes that affect their mechanical properties and tend to reduce their durability. In this experimental investigation, hardened Portland cement pastes were exposed to elevated temperatures of 200, 400, 600, 800, and $1000^{\circ}C$ for 60 minutes, and the resulting damage was studied by thermogravimetry (TG), mercury intrusion porosimetry (MIP) and density measurements. These results revealed that the residual compressive strength is increased at temperatures greater than $400^{\circ}C$ due to a small pore size of 3 nm and/or rehydration of the dehydrated cement paste. However, a loss of the residual strength occurs at temperatures exceeding 500 and $600^{\circ}C$. This can be attributed to the decomposition of hydrates such as portlandite and to an increase in the total porosity.

A Prediction Model on Porosity of Hardened Cement Paste under High Temperatures (고온시의 경화된 시멘트 페이스트의 공극률 예측모델)

  • Lee, Jae-Sung;Jung, Sung-Jin;Jung, Young-Han;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.103-109
    • /
    • 2009
  • The thermal degradation of concrete results mainly from two mechanisms. The first one is related to phase transformations of constituents at different temperatures. The initial constituents transform to other phases due to elevated temperature. The second mechanism is related to the temperature sensitivity of the mechanical properties of the constituents in concrete. Therefore, the degradation of concrete under high temperatures must be studied from both mechanical and chemical points of view. This study was performed as a basic study to propose the material models of concrete exposed to high temperatures considering above two mechanisms. This study presents a prediction model on the porosity of hardened cement paste considering phase changes according to temperature increase.

Basic Properties of Permeable Block mixed with Diatomite (규조토를 혼입한 투수블록의 기초특성)

  • Kim, Min-Ho;Choi, Byung-Cheol;Yoo, Jae-Gyun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.123-124
    • /
    • 2021
  • Recently, the danger of fine dust has emerged worldwide. In general, fine dust refers to particulate matter less than 10㎛ and ultrafine dust less than 2.5㎛, and according to the announcement by HEI (Health Impact Research Institute) in 2015, the concentration of ultrafine dust in Korea is the second highest among OECD member countries. It was investigated. In this study, an experiment was conducted to analyze how the diatomaceous earth substitution rate affects the strength characteristics of the permeable block. As the replacement rate of diatomaceous earth increased, the strength decreased. The reason why the strength decreases with the use of diatomaceous earth is that the strength of the hardened body decreases as the structure of the hardened body becomes less dense as the amount of diatomaceous earth increases, and the reason that the strength decreases as the replacement rate of diatomaceous earth increases is the reason for the absorption performance of diatomaceous earth. Therefore, it is judged that a void was generated inside the hardened body while water was absorbed and then evaporated or discharged in the matrix, and accordingly, the strength decreased.

  • PDF