• Title/Summary/Keyword: hardened properties

Search Result 558, Processing Time 0.035 seconds

Effect of GGBS and fly ash on mechanical strength of self-compacting concrete containing glass fibers

  • Kumar, Ashish;Singh, Abhinav;Bhutani, Kapil
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.429-437
    • /
    • 2021
  • In the era of building engineering the intensification of Self Compacting Concrete (SCC) is world-shattering magnetism. It has lot of rewards over ordinary concrete i.e., enrichment in production, cutback in manpower, brilliant retort to load and vibration along with improved durability. In the present study, the mechanical strength of CM-2 (SCC containing 10% of rice husk ash (RHA) as cement replacement and 600 grams of glass fibers per cubic meter) was investigated at various dosages of cement replacement by fly ash (FA) and GGBS. A total of 17 SCC mixtures including two control SCC mixtures (CM-1 and CM-2) were developed for investigating fresh and hardened properties in which, ten ternary cementitious blends of SCC by blending OPC+RHA+FA, OPC+RHA+GGBS and five quaternary cementitious blends (OPC+RHA+FA+GGBS) at different replacement dosages of FA and GGBS were developed with reference to CM-2. For constant water-cement ratio (0.42) and dosage of SP (2.5%), the addition of glass fibers (600 grams/m3) in CM-1 i.e., CM-2 shows lower workability but higher mechanical strength. While fly ash based ternary blends (OPC+RHA+FA) show better workability but lower mechanical strength as FA content increases in comparison to GGBS based ternary blends (OPC+RHA+GGBS) on increasing GGBS content. The pattern for mixtures appeared to exhibit higher workablity as that of the concentration of FA+GGBS rises in quaternary blends (OPC+RHA+FA+GGBS). A decrease in compressive strength at 7-days was noticed with an increase in the percentage of FA and GGBS as cement replacement in ternary and quaternary blended mixtures with respect to CM-2. The highest 28-days compressive strength (41.92 MPa) was observed for mix QM-3 and the lowest (33.18 MPa) for mix QM-5.

Effects of heat and gamma radiation on the degradation behaviour of fluoroelastomer in a simulated severe accident environment

  • Inyoung Song ;Taehyun Lee ;Kyungha Ryu ;Yong Jin Kim ;Myung Sung Kim ;Jong Won Park;Ji Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4514-4521
    • /
    • 2022
  • In this study, the effects of heat and radiation on the degradation behaviour of fluoroelastomer under simulated normal operation and a severe accident environment were investigated using sequential testing of gamma irradiation and thermal degradation. Tensile properties and Shore A hardness were measured, and thermogravimetric analysis was used to evaluate the degradation behaviour of fluoroelastomer. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the structural changes of the fluoroelastomer. Heat and radiation generated in nuclear power plant break and deform the chemical bonds, and fluoroelastomer exposed to these environments have decreased C-H and functional groups that contain oxygen and double bonds such as C-O, C=O and C=C were generated. These functional groups were formed by auto oxidation by reacting free radicals generated from the cleaved bond with oxygen in the atmosphere. In this auto oxidation reaction, crosslinks were generated where bonded to each other, and the mobility of molecules was decreased, and as a result, the fluoroelastomer was hardened. This hardening behaviour occurred more significantly in the severe accident environment than in the normal operation condition, and it was found that thermal stability decreased with the generation of unstable structures by crosslinking.

A Fundamental Study for Proper Maximum Size of Coarse Aggregate of Ready-mixed Shotcrete (레디믹스트 숏크리트의 적정 골재최대치수 제안을 위한 기초적 연구)

  • Ma, Sang-Joon;Choi, Hee-Sup;Kim, Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.47-55
    • /
    • 2008
  • This study was carried out to investigate and analyse the influence of maximum size of coarse aggregate and quality control of aggregate on the properties of shotcrete through the laboratory and field test. From the results of the test, as the maximum size of coarse aggregate decreased from 13 mm to 8 mm, plasticity property declined and compressive strength and dynamic modulus of elasticity of hardened concrete increased remarkably, so it was found that the aggregate size 8 mm was superior to 13, 10 mm in fluidity, constructability and durability. Therefore, it was advisable for well maximum size of coarse aggregate to apply to the 8mm aggregates through the Ready-mixed Method for quality control and minimum segregation.

Strength Properties According to the Conditions of Low Carbon Inorganic Composite Using Industrial By-product (산업부산물을 사용한 저탄소 무기결합재의 조건별 강도특성)

  • Lee, Yun-Seong;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.54-63
    • /
    • 2012
  • The purpose of this study is to examine the potential for reducing the environmental load and $CO_2$ gas when cement is produced by using cement substitutes. These substitutes consisted of blast furnace slag, red mud and silica fume, which were industrial by-products. The most optimum mix was derived when alkali accelerator was added to low carbon inorganic composite mixed with industrial by-product at room temperature. It is determined that hardened properties and the results of compressive strength tests changed based on CaO content, Si/Al, the mixing ratio and the amount of alkali accelerator, curing conditions and W/B. The results of test analysis suggest that the optimum mix of low carbon inorganic composite is CaO content 30%, Si/Al 4, the mixed ratio of alkali accelerator $(NaOH:Na_2SiO_3)$ 50g:50g, the amount of alkali accelerator 100g and W/B 31%. In addition, if contraction is complemented, low carbon inorganic composite with superior performance could be developed.

Physical Properties Testing and Practical Applications of Restoration Materials Made with Extra Hard Stone and Metakaolin (초경석고와 메타카올린 혼합재료의 물성실험 및 적용)

  • Kim, Hyunsuk;Lee, Haesoon
    • Conservation Science in Museum
    • /
    • v.17
    • /
    • pp.101-116
    • /
    • 2016
  • Ceramic cultural artifacts restored with gypsum-based materials are prone to decay over time due to gypsum's natural absorption and release of atmospheric moisture, often leading to distortion and peeling of painted layers. This study proposes a new restoration material which utilizes extra hard stone, significantly superior in strength to regular gypsum. In order to enhance its physical properties and make it suitable for restoration of ceramics, extra hard stone is mixed with metakaolin. This mixture far surpasses regular gypsum in compressive strength(119MPa vs. 26MPa) while also maintaining a much lower wear rate(0.88% vs. 2.53%). Furthermore, the water absorption rate(2.9%) of the mixed material is over five times lower than that of regular gypsum(17.2%). When examined using a SEM(Scanning Electron Microscope), this mixture also proved superior to extra hard stone in terms of hardened density. The addition of metakaolin increases the mixture's strength and water resistance over that of extra hard stone and also improves its surface density, making it ideal for the restoration of ceramics. It has already been used to repair ceramic objects in the Museum's collection: Clay basin(sinan 18892), Buncheong ware bottle with incised peony design(jubsu 2034), Buncheong ware bowl with chrysanthemum(jubsu 1730). Results thus far have shown the mixture to be easy to inject and layer as well as harden into an even surface, which allows for smooth application of paint for color matching.

Effect of Fluorine-Silicate Hybrid Based Crack Reducing Agent on the Resistance for Shrinkage Crack and Gas Permeability of Concrete (불소-실리카 복합형 균열저감제가 콘크리트의 수축균열 저항성 및 투기성에 미치는 영향)

  • Lee, Man-Ik;Park, Jong-Hwa;Nam, Jae-Hyun;Kim, Do-Su;Kim, Jae-On
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.631-637
    • /
    • 2006
  • In this study, fundamental properties such as fresh and hardened performance of concrete mix(specification : 25-24-18) added fluorine-silicate hybrid based crack reducing agent(FS) were measured. Addition of FS ranged from 0.5% to 2.0% at intervals 0.5% based on cement weight. Adequate dosage(0.5%) of FS derived from basic properties measurements applied and compared resistance for shrinkage crack. The permeability of concrete in the absence(24-S-0.0) and presence(24-S-0.5) of evaluated at a mock-up sized concrete. Concrete added FS improved resistance for shrinkage crack and consequently crack number, length and area decreased to $50{\sim}74.4%$ compared non-added. As well, by the addition of FS, the resistance for permeability and penetration depth to concrete surface region increased 67% and 40%, respectively. Therefore it was confirmed that shrinkage crack resistance and permeability of concrete could be improved by the addition of FS.

Characteristics of Ferralsols Soils and Rice Growth in Buchanan Region, Liberia (LIBERIA BUCHANAN 지역 FERRASOLS 토양의 이화학적 특성과 수도생육)

  • Jo, Guk Hyun;Kim, Kwang Sik;Kim, Yong Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.168-177
    • /
    • 1997
  • This study was carried out to find the physico-chemical properties of soils and the rice growth at the pilot project rice farm of Buchanan city, Liberia. The results were as follows. Soils were classified as Plinthic Ferralsols. Real tropical soils had an oxic B horizon of 30cm thick with diffused horizon boundaries. The surface soils have Ochric A horizon with low organic matter. Plinthite was distributed throughout the whole soil profile unevenly. Exposed to sun light, Plinthite was dried out, hardened, and developed irreversibly into ironstone. There were 286 termite hills in 20ha in the project area. The pH value of the termite hills was higher than that of the ordinary soil two units. Soils of the termite hills had higher contents of carbon, nitrogen, available phosphate and exchangeable bases, especially calcium(2,000mg/kg). Available Fe contents was 230~330mg/kg in the surface soil, and 2,200mg/kg in the subsoil. This caused bronzing of rice in a few days after transplanting. The tolerance of Fe toxicity was lower in Korean cultivars than in Liberian cultivars. The tolerant cultivar was Hangang among Korean cultivars and Nizersail and Suakoko 8 among Liberian cultivars. Area weighted average percolation rate was 8.3mm/day and infiltration rate was 2~2.5mm/hr.

  • PDF

An analysis of the properties of mortar according to the change of the replacement rate of waste foundry sands (폐주물사의 치환율 변화에 따른 모르타르의 특성 분석)

  • Ryu, Hyun-Gi;Kwon, Yong-Ju
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.99-104
    • /
    • 2009
  • For recycling of waste foundry sands, researchers recently try to recycle them rather than depend on reclamation, and are studying on how to combine waste foundry sands with cement and use them for various kinds of construction material as the effective recycling method of waste foundry sand. In this research, The ways to find the proper replacement rate of waste foundry sands and to make use of them were suggested through the experiments on the range to apply waste foundry sands with two levels of 1:3 mixture rate of W/C 43% and 50%. The research result showed that in terms of liquidity as the characteristic of unhardened mortar, as the replacement rate of waste foundry sands increased, its flow tended to decrease. The amount of air also displayed a similar tendency to that of liquidity in that the higher the replacement rate of waste foundry sands became, the lower it became. With regard to the solidity trait of hardened mortar, it increased when the waste foundry sands were replaced more, and the replacement of waste foundry sands caused increased initial solidity. As for the amount of water permeated and that of water absorbed as the water tight proofing properties, the amount of permeated water was proved to decrease because of the gap recharge effect by the fine powder of waste foundry sands, and the replacement of waste foundry sands in the structures requiring watertightness is concluded to be very effective.

  • PDF

Effects of Annealing Temperature on Interface Properties for Al/Mild Steel Clad Materials (어닐링 온도 변화가 Al/연강 클래드재의 계면 특성에 미치는 영향)

  • Jeong, Eun-Wook;Kim, Hoi-Bong;Kim, Dong-Yong;Kim, Min-Jung;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.591-597
    • /
    • 2012
  • For heat exchanger applications, 2-ply clad materials were fabricated by rolling of aluminum (Al) and mild steel sheets. Effects of annealing temperature on interface properties, especially on inter-layer formation and softening of strain hardened mild-steel, for Al/mild steel clad materials, were investigated. To obtain optimum annealing conditions for the Al/mild steel clad materials, annealing temperature was varied from room temperature to $600^{\circ}C$. At the annealing temperature about $450^{\circ}C$, an inter-layer was formed in an island-shape at the interface of the Al/mild steel clad materials; this island expanded along the interface at higher temperature. By analyzing the X-ray diffraction (XRD) peaks and the energy dispersive X-ray spectroscopy (EDX) results, it was determined that the exact chemical stoichiometry for the inter-layer was that of $Fe_2Al_5$. In some samples, an X-layer was formed between the Al and the inter-layer of $Fe_2Al_5$ at high annealing temperature of around $550^{\circ}C$. The existence of an X-layer enhanced the growth of the inter-layer, which resulted in the delamination of the Al/mild-steel clad materials. Hardness tests were also performed to examine the influence of the annealing temperature on the cold deformability, which is a very important property for the deep drawing process of clad materials. The hardness value of mild steel gradually decreased with increasing annealing temperature. Especially, the value of hardness sharply decreased in the temperature range between $525^{\circ}C$ and $550^{\circ}C$. From these results, we can conclude that the optimum annealing temperature is around $550^{\circ}C$ under condition of there being no X-layer creation.

Quality Control Method for the Concrete from Multiple Suppliers (콘크리트 혼합타설시 품질확보 방안)

  • Kim, Kyung-Hoon;Lee, Sang-Hak
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.227-234
    • /
    • 2018
  • Concrete mix design controls the various concrete properties such as workability and strength. Fresh concrete requires workability and the hardened concrete requires compressive strength. If using the concrete from different supplier concurrently, the concrete placed can show different properties unlike originally designed. However most of construction sites place the concrete from several companies. One of the predictable problems is whether the ultimate performance of concrete achieves the originally designed performance after placing the concrete from several companies. Therefore this research aims to keep the concrete quality in the above cases. This research has been done through literature review, questionnaire and the verification at the sample construction site. A literature review describes the general characteristics and quality control of concrete and a questionnaire describes the awareness and implementation of Korean Construction Specification(KCS). The production capacity and the delivery capacity of concrete suppliers is smaller than the daily quantity required on the sample site, therefore the placing of the concrete with different mixing ratio is inevitable and it can not keep the KCS. As a conclusion, this research proposed 5 alternatives and one of them has been adopted, i.e. to unify the concrete mix design of multiple concrete suppliers.