• Title/Summary/Keyword: hardened properties

Search Result 558, Processing Time 0.024 seconds

An Study on Compressive Strength Properties of Mortar with Municipal Solid Waste Incineration Ash Melted Slag Powder (쓰레기 소각재 용융슬래그 미분말을 혼입한 모르타르의 압축강도 특성에 대한 연구)

  • Lee, Yong-Moo;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • In order to investigate the feasibility of municipal solid waste incineration ash melted slag powder as admixture, an experimental study was performed on cement mortar with municipal solid waste incineration ash melted slag powder. Fresh mortar properties and strength properties with various municipal solid waste incineration ash melted slag powder replacement ratios were estimated. There replacement ratio adopted in this study was 0, 10, 20, 30, 40, 50%. After then flow properties was considered as properties of fresh mortar. And compressive strength was determined 3, 7, 14, 28, 56 days for the hardened mortar specimens. According to the test results, the flow of mortar was increased with in replacement amount of municipal solid waste incineration ash melted slag powder. Furthermore, compressive strength at early age was decreased, whereas the compressive strength at the age of 28, 56day was increased.

Characteristics of non-waxy rice starch/gum mixture gels (멥쌀 전분과 검물질 혼합물 겔의 특성)

  • Shin Malshick;Kwon Ji-Young;Song Ji-Young
    • Korean journal of food and cookery science
    • /
    • v.21 no.6 s.90
    • /
    • pp.942-949
    • /
    • 2005
  • To improve the textural properties and stabilize the structure and gel matrix of non-waxy rice starch gels, non-waxy rice starch/gum mixture gels were prepared from various food gums, gum arabic, guar, algin, deacyl gellan, xanthan and gellan gums. The morphological and textural properties and freeze-thaw stability of their gels were compared. Rice starch/gum mixture gels with various gums formed a more homogeneous gel matrix with smaller particle size than rice starch gel without Em, but the trends differed depending on the gum types. The textural properties of rice starch/gum mixture gels were changed with the gum types. The shape of the rice starch/gum mixture gel matrix was desirable when mixed with gellan and algin. The textural properties of gels hardened in the rice starch/algin mixture gel and softened in the rice starch/algin mixture gel. The rice starch gels showed V-type crystallinity by x-ray diffractometer, but the peak at $2\theta$ = $20^{o}$ was decreased with increasing gum addition. The freeze-thaw stability increased with increasing gum addition. Gellan and algin were especially effective.

Effect of Steel Fiber Addition on the Mechanical Properties and Durability of High-Flowable Retaining Wall Material (고유동 흙막이 벽체 재료의 역학적 성능 및 내구성에 대한 강섬유 혼입률의 영향)

  • Donggyu Kim;Seungtae Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.6
    • /
    • pp.13-20
    • /
    • 2023
  • This paper is aimed to evaluate the mechanical properties and durability of high-flowable retaining wall material (RWM) with different levels of steel fiber (SF) content. To produce the specimens of RWM, some chemical agents such as superplasticizer (SP), air-entrained agent (AEA) and viscosity modifying agent (VMA) were added in the fresh RWM. The compressive and split tensile strength measurements were performed on the hardened RWM specimens at the predetermined periods. Additionally, surface electric resistivity and absorption tests according to ASTM standards were carried out to examine mechanical properties of RWM mixes. The durable performances such as chloride ions penetrability and freezing-thawing resistance of RWM mixes were experimentally investigated. As resutls, it was found that the performance of RWM mix with SF were much better than that without SF, especially at the 2% addition of SF. Thus, it is noted that the proper addition of SF in the RWM mix may have a beneficial effect to improve mechanical properties and durability of RWM mixes.

Mock-up Test of Concrete Using AE Water Reducing Agent of Early-Strength Type in Construction Field (조기강도발현형 AE감수제를 사용한 콘크리트의 현장 Mock-up 실험)

  • 황인성;김기훈;김규동;이승훈;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper. applicability of high early strength type AE water reducing agent(HESAEWA) developed by the authors is discussed by applying Mock-up test. For fresh concrete properties, concrete using existing AE water reducing agent(EAEWRA) and HESAEW A meets the target slump and air content at jobsite. Setting time of concrete using HESAEWA is shorter than that using EAEWRA. Remarkable variance of bleeding and settlement is not observed with type of AE water reducing agent. For hardened concrete properties, use of HESAEW A results in higher strength development compared with that of EAEWRA at standard curing and in field curing condition. Reaching time to accomplish 5MPa of compressive strength. which is possible to remove side form. is taken using HESAEWA earlier than that of EAEWRA by 1day. Therefore, it is confirmed that use of HESAEWA can meet the requirements of general quality of concrete and achieve high early strength development as well as has a desirable field applicability.

  • PDF

Experimental investigation on the use of recycled aggregates in producing concrete

  • Shah, Attaullah;Jan, Irfan U.;Khan, Raza U.;Qazi, Ehsan U.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.545-557
    • /
    • 2013
  • Disposal of construction wastes poses major challenge to the municipal administration in the developing countries. At the same time new developments in these countries are unscrupulously exploiting the natural resources. The sustainable development requires judicious and careful utilization of natural resources. In this context, reuse of construction and demolition waste can save the global natural resources to greater extent. In this work the bricks and concrete waste from construction sites were crushed to the desired sizes and mixed in various proportions to study its properties in the concrete both in fresh and hardened states. Six mixes of natural and recycled aggregates were used to make the coarse aggregates for the concrete. From each mix nine cylinders were cast, which were tested at 7,14 and 28 days. The properties of concrete with recycled aggregates were compared with the control mix having natural aggregates. The nominal ratio of cement sand and coarse aggregates were kept at 1:2:4 by weight for all mixes. The tests have shown that concrete with recycled aggregates made from old concrete and brick bats provide greater opportunities for reuse of construction wastes in concrete.

Effects of Wheat Fiber, Oat Fiber, and Inulin on Sensory and Physico-chemical Properties of Chinese-style Sausages

  • Huang, S.C.;Tsai, Y.F.;Chen, C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.875-880
    • /
    • 2011
  • This study introduces the addition of wheat fiber, oat fiber, and inulin to Chinese-style sausages, in amounts of 3.5% and 7%, respectively. Researchers used analysis of general composition and texture properties, and sensory evaluation to assess the influence of these three types of dietary fiber on the quality and palatability of Chinese-style sausages. Results showed that the type and amount of dietary fiber introduced did not significantly influence the general composition, color, and total plate count of sausages. However, the addition of wheat fiber and oat fiber significantly hardened the texture of Chinese-style sausages (p<0.05). A greater amount of dietary fiber added implied a harder texture. Added inulin did not influence the texture of Chinese-style sausages (p>0.05). Results of product assessment showed that, aside from sausages with 7% wheat fiber scoring less than 6 points (on a 9-point scale) in terms of overall acceptability, the other groups of Chinese-style sausages scored over 6 points. Judges preferred the sausage groups with 3.5% added oat and wheat fiber. This study demonstrates that adding fiber to Chinese-style sausages to increase the amount of dietary fiber is feasible.

Ready mixed concrete behavior of granulated blast furnace slag contained cement

  • Karim, M. Razaul;Islam, A.B.M. Saiful;Chowdhury, Faisal I.;Rehman, Sarder Kashif Ur;Islam, Md. Rabiul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.139-147
    • /
    • 2018
  • Due to enhanced construction requirement, ready mixed concrete are being popular day by day. The current study aimed to develop ready mixed concrete using GBFS contained cement and determine its properties of fresh and hardened states. A real scale experiment was set up in a ready mixed plant for measuring workability and compressive strength. The workability was tested after mixing (within 5 minutes), 30, 60, 90, 120 and 150 minutes of the running of bulk carrier. The ready mixed carrier employed spinning motion i.e., rotating around its axis with 20 RPM and running on road with 1km/h speed. The mixing ratio of cement: sand:gravel, water to cement ratio, super plasticizer were, 1:1.73:2.47, 0.40 and 6% of cement, respectively. The chemical composition of raw material was determined using XRF and the properties of cements were measured according to ASTM standards. The experimental results confirm that the cement with composition of 6.89% of GBFS, 4% of Gypsum and 89.11% of clinker showed the good compressive strength and workability of concrete after 150 minutes of the spinning motion in bulk carrier.

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • 김진만
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.67-76
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency. In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 20mm of flow value and above 300kgf/cm2 of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~l5% AG.

  • PDF

Fundamental Properties of Mortar and Concrete Using Waste foundry Sand

  • Moon Han-Young;Choi Yun-Wang;Song Yong-Kyu;Jeon Jung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.141-147
    • /
    • 2005
  • The development of automobile, vessel, rail road, and machine industry leads an increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 700,000 tons a year, but most WFS has been buried itself and only $5{\~}6\%$ WFS is recycled as construction materials. Therefore, it is necessary for most WFS to research other ways which can be used in a higher value added product. The study on recycling it as a fine aggregate for concrete or green sand has been in progress in America and Japan since 1970s and 1980s respaectively. In this study, two types of WFS were used as a fine aggregate for concrete. Nine types of concrete aimed at the specified strength of 30 MPa were mixed with washed seashore coarse sand in which salt was removed, and WFS and then appropriate mixture proportion of concrete was determined. Moreover, basic properties such as air contents, setting time, bleeding, workability and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

Application of Fuller's ideal curve and error function to making high performance concrete using rice husk ash

  • Hwang, Chao-Lung;Bui, Le Anh-Tuan;Chen, Chun-Tsun
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.631-647
    • /
    • 2012
  • This paper focuses on the application of Fuller's ideal gradation curve to theoretically design blended ratio of all solid materials of high performance concrete (HPC), with the aid of error function, and then to study the effect of rice husk ash (RHA) on the performance of HPC. The residual RHA, generated when burning rice husk pellets at temperatures varying from 600 to $800^{\circ}C$, was collected at steam boilers in Vietnam. The properties of fresh and hardened concrete are reviewed. It is possible to obtain the RHA concrete with comparable or better properties than those of the specimen without RHA with lower cement consumption. High flowing concrete designed by the proposed method was obtained without bleeding or segregation. The application of the proposed method for HPC can save over 50% of the consumption of cement and limit the use of water. Its strength efficiency of cement in HPC is 1.4-1.9 times higher than that of the traditional method. Local standards of durability were satisfied at the age of 91 days both by concrete resistivity and ultrasonic pulse velocity.