• Title/Summary/Keyword: hardened layer

Search Result 112, Processing Time 0.026 seconds

Low Temperature Plasma Nitriding Process of AISI 304L Austenitic Stainless Steels for Improving Surface Hardness and Corrosion Resistance (내식성 및 표면경도 향상을 위한 AISI 304L 스테인리스강의 저온 플라즈마질화 프로세스)

  • Lee, In-Sup
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.629-634
    • /
    • 2009
  • The effects of processing parameters on the surface properties of the hardened layers processed by the low temperature plasma nitrocarburizing and the low temperature two-step plama treatment (carburizing+nitriding) were investigated. The nitrogen-enriched expanded austenite structure (${\gamma}_N$) or S phase was formed on all of the treated surface. The surface hardness reached up to 1200 $HV_{0.025}$, which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The thickness of hardened layer of the low temperature plasma nitrocarburized layer treated at $400^{\circ}C$ for 40 hour was only $15{\mu}m$, while the layer thicknesss in the two-step plama treatment for the 30 hour treatment increased up to about $30{\mu}m$. The surface thickness and hardness increased with increasing treatment temperature and time. In addition, the corrosion resistance was enhanced than untreated samples due to a high concentration of N on the surface. However, higher treatment temperature and longer treatment time resulted in the formation of $Cr_2N$ precipitates, which causes the degradation of corrosion resistance.

A Study on the Influence of Induction Coil Movement Speed and Frequency on Induction Hardening of SCM440 Steel (SCM440 강의 유도 경화에 미치는 유도코일 이동속도 및 주파수의 영향에 관한 연구)

  • Ki-Woo Nam;Ki-Hang Shin;Byoung-Chul Choi;Gum-Hwa Lee;Jong-Kyu Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.813-823
    • /
    • 2023
  • In this study, microstructure, hardening layer hardness, and case depth were evaluated after induction hardening(IH) of base metal specimen(BM) treated with annealing and quenching-tempering specimen(QT) treated with quenching and tempering. The microstructure after IH was significantly influenced by the microstructure before IH and the induction coil heating movement speed, but the effect of the induction frequency was very small. The hardness of the hardened layer at an induction coil heating movement speed of 15 mm/s or less was more influenced by the microstructure before IH than the induction coil travel speed and induction frequency. The induction coil travel speed has the significantly effect on the case depth, the induction frequency has effect and the microstructure before IH has a small effect.

Characteristics of High Frequency Induction-Hardened Bearing Steel Produced by VIM (VIM에 의해 제조된 고주파 유도경화 베어링강의 특성에 관한 연구)

  • Choe, Byeong-Yeong;Jang, Jeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1176-1181
    • /
    • 1998
  • Characteristics of high frequency induction- hardened bearing steel have been investigated using 0.55wt.% C-1.68wt.% Mn specimens produced by vacuum induction melting (VIM). The K4 value in DIN 57602 of the specimens was assessed to be 6.41, high level of cleanliness. The specimens were high frequency induction-hardened to form heterogeneous submicron- lath martensite in the surface hardened layer with about 2.5mm in effective depth. Rolling contact fatigue tests were conducted in elasto-hydrodynamic lubricating conditions under a maximum Hertzian contact stress of$ 492kgmm^{-2}$ . It was found that microhardness in the subsurface, up to about $500\mu\textrm{m}$ in depth, below the raceway of rolling contact fatigued specimens was increased in comparison with that of induction-hardened layers. The depth of maximum microhardness- increased region was about $100\mu\textrm{m}$ from surface, showing white etching area. Crack initiation and propagation in the white etching area below the raceway of rolling contact fatigued specimens were observed.

  • PDF

Influence of Ambient Gas Composition on the Microstructure of Plasma Nitrocarburised SCM435 steel (플라즈마 질탄화처리된 SCM435강의 미세조직에 미치는 가스 조성의 영향)

  • Lee, In-Seop
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.427-430
    • /
    • 2002
  • Plasma nitrocarburizing treatment was performed for SCM 435 steel by using a plasma ion nitriding system. The effects of the variation of nitrogen and methan contents upon the hardened layer was investigated. Both the thickness of the compound layer and the amount of $\varepsilon$ phase in the compound layer increased with increasing nitrogen content. However, the thickness of the compound layer decreased due to unstable plasma for an atmosphere containing 90% $N_2$ gas content in the gas mixture. The amount of $\varepsilon$phase in the compound layer increased with increasing $CH_4$ gas content. For $CH_4$ gas content more than 2% in the gas mixture, the thickness of the compound layer decreased due to the formation of $\theta$ phase.

A Study on the Effect of Non-martensitic Layer on the Fatigue Strength in Carburized Gears (첨탄기어의 피로강도에 미치는 표면이상층의 영향에 관한 연구)

  • 류성기;박준철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.357-364
    • /
    • 2001
  • This study deals with the effect on non-martensitic layer on the fatigue strength in carburized gear. The test gears are carburized, then treated by the combination of chemical polishing and electro-polishing. Carburization treatment is used widely on parts of power transmission system like surface hardened layer to improve fatigue strength. Carburized gears are observed using a scanning electron microscope(SEM) to determine the characteristics of crack initiation mechanism in the surface layer. The constant street amplitude fatigue test is performed by using and electro-hydraulic servo-controlled pulsating tester. The S-N curves are obtained and illustrated. The effect of non-martensitic layer on the fatigue strength is clarified.

  • PDF

Effects of surface hardening by using $CO_2$ laser defocussed beam on the fatigue resistance of ductile irons ($CO_2$ 레이저 분산빔에 의한 표면경화가 구상흑연주철의 피로특성에 미치는 영향)

  • 박근웅;한유희;이상윤
    • Laser Solutions
    • /
    • v.2 no.2
    • /
    • pp.42-51
    • /
    • 1999
  • This study has been performed to investigate into some effects of the output power and traverse speed of laser beam on the microstructures, hardness and fatigue resistance of the ductile iron surface-hardened by $CO_2$ laser defocussed beam. Optical micrographs have shown that with increasing the output power and decreasing the traverse speed, the martensite was coarsened and some retained austenite were appeared in ductile iron. The microstructures of hardening zone were composed of bull's eye and some nodular graphite dissolved structures by the effect of self quenching. Fatigue fracture characteristics of ductile iron have appeared in the high stress and low stress ranges. The fracture initiated at nodular graphites in the surface hardened layer due to the stress concentration caused by a notch effect. The interior graphite nodules were broken away or popped out during crack propagation. Fatigue test has shown that values of fatigue strength considerably increased with increasing output power at a given traverse speed.

  • PDF

Analysis of the Rolling Contact Fatigue of the Shot Peened Ball Bearing by X-ray Diffraction (X선회절에 의한 SHOT PEENING처리 구름베어링의 구름접촉 피로해석)

  • 이한영
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.39-45
    • /
    • 1997
  • The shot peening treatment were conducted for improving the strength of rolling contact fatigue of machine element like a gear. This paper was undertaken to analyze the influence of shot peening treatment for inner race of ball bearing on the rolling contact fatigue. Shot peening treatment were applied to the full hardened and the carbonitrided bearing. And the rolling contact fatigue life test and X-ray diffraction test were carried out. The results of this study showed that the fatigue life of ball bearing in the clean and the contaminated oil could be improved by shot peening treatment. This effect was found to be more pronounced to the full hardened bearing. These facts might be due to the generation of compressive residual stress and the strain hardening of surface layer by shot peening treatment. The failure of the shot peened bearing were presumed to initiate at surface.

Estimation of Hardening Layer Depths in Laser Surface Hardening Processes Using Neural Networks (레이져 표면 경화 공정에서 신경회로망을 이용한 경화층 깊이 예측)

  • Woo, Hyun Gu;Cho, Hyung Suck;Han, You Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.52-62
    • /
    • 1995
  • In the laser surface hardening process the geometrical parameters, especially the depth, of the hardened layer are utilized to assess the integrity of the hardening layer quality. Monitoring of this geometrical parameter ofr on-line process control as well as for on-line quality evaluation, however, is an extremely difficult problem because the hardening layer is formed beneath a material surface. Moreover, the uncertainties in monitoring the depth can be raised by the inevitable use of a surface coating to enhance the processing efficiency and the insufficient knowledge on the effects of coating materials and its thicknesses. The paper describes the extimation results using neural network to estimate the hardening layer depth from measured surface temperanture and process variables (laser beam power and feeding velocity) under various situations. To evaluate the effec- tiveness of the measured temperature in estimating the harding layer depth, estimation was performed with or without temperature informations. Also to investigate the effects of coating thickness variations in the real industry situations, in which the coating thickness cannot be controlled uniform with good precision, estimation was done over only uniformly coated specimen or various thickness-coated specimens. A series of hardening experiments were performed to find the relationships between the hardening layer depth, temperature and process variables. The estimation results show the temperature informations greatly improve the estimation accuracy over various thickness-coated specimens.

  • PDF

Microstructural Realization of SD400 Rebar by Developing Tempcore Simulation Apparatus (템프코어 냉각모사 장치 개발을 통한 SD400 철근 미세조직 구현)

  • Park, Chun Su;Yi, Hyang Jun;Bae, Seh Wook;Kim, Gil-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.543-547
    • /
    • 2015
  • The cooling process referred to as Tempcore has been applied to produce a high-strength rebar. Excellent rebar with strength and weldability can be manufactured from mild steel without the addition of alloying elements by using the Tempcore process. However, there are limitations to evaluating the effect of various chemical compositions and cooling conditions within a site facility. In this study, we developed an apparatus to simulate the Tempcore process and obtained microstructures with a hardened surface layer, an intermediate region and a soft inner core. The experimental apparatus has been equipped with a cooler set that is the same as the site facility and consists of a pump line that supplies pressure of 12-13 bar and flow rate of up to $50m^3/h$. In accordance with the simulation result of steel grade SD400 that requires more than 400 MPa of yield strength, both the hardened area ratio and the hardness with respect to each cooling depth were found to agree well with the product.

Microstructures and Properties of Surface Hardened Layer on the Plasma Sulfnitrided SKD61 Steel (플라즈마 침류질화처리된 SKD61강의 표면경화층의 미세조직과 특성)

  • Lee, In-Sup;Park, Chul;Park, Ik-Min
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.568-572
    • /
    • 2002
  • Plasma sulfnitriding technology was employed to harden the surface of SKD61 steel. The plasma sulfnitriding was performed with 3 torr gas pressure at $580^{\circ}C$ for 20 hours. Plasma sulfnitriding resulted in the formation of very thin $2-3\mu\textrm{m}$ FeS sulfide layer on top of $15-20\mu\textrm{m}$ compound layer, which consisted of predominantly $\varepsilon$- $Fe{2-3}$ N and a second phase of $\Upsilon'-Fe_4$N. In comparision with plasma nitriding treatment, plasma sulfnitriding treatment showed better surface roughness and corrosion resistance due to the presence of the thin FeS layer. which coated microvoids and microcracks on top of the nitrided layer. It was also found that plasma sulfnitrided sample showed better wear resistance due to the presence of the thin FeS layer which acted as a solid lubricant.