• 제목/요약/키워드: hardened layer

검색결과 112건 처리시간 0.028초

구상흑연주철의 마이크로 펄스 플라즈마 질화에 미치는 공정변수의 영향에 관한 연구 (A study on the Effect for Process Parameters on the Micro-pulse Plasma Nitriding of Ductile Cast Iron)

  • 김무길;이철민;권성겸;정병호;이재식;유용주;김기준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.43-51
    • /
    • 2000
  • The effect of time, temperature and gas composition on the case hardened thickness, hardness and nitride formation in the surface of ductile cast iron(GCD400) have been studied by micro-pulse plasma technique. Typically, external compound layer and internal diffusion layer which is much thicker than compound layer was observed in the nitride hardening of ductile cast iron. The relative amount kind of phases formed in the nitrided hardening changed with the change of nitriding conditions. Generally, only nitride phases such as $\gamma^'$($Fe_4N$), or $\varepsilon$($Fe_{2-3}N$) phases were detected in compound layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. The optimum nitriding temperature was obtained at $520^{\circ}C$. The nitrided hardening thickness parabolically with nitriding time(t) and thus, the case hardened layer(d) fits well with the typical parabolic equation ; d=kt. The material constant k for GCD400 nitrided at $520^{\circ}C$ was $0.04919\times10^3{\mu}m.hr^{-1/2}$.

  • PDF

복합방수공법으로 구성된 반복인장시험 분석 (Analysis of Repeated Tensile Test Results Consisting of Composite Waterproof Methods)

  • 김병일;오상근;송제영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.41-42
    • /
    • 2023
  • Test results for a total of four types of complex waterproofing methods were analyzed. In the case of the A method, the stress generated by high-viscosity compounds adhering to the base test body during the behavior of the test body was transferred to the sheet surface layer. In the case of the B method and the C method, the properties of the waterproof sheet consisting of a non-hardened seal based and a non-hardened seal are well reflected and stress absorption in the non-hardened seal layer acts strongly, rapidly reducing stress transfer to the surface of the waterproof sheet. In the case of the D method, slip occurs due to repeated behavior, and the stress on the attachment surface is reduced, and the stress transfer to the surface is greatly reduced. As a result, four types of composite waterproofing methods resulted in changing the stress transfer mechanism caused by behavior on the concrete surface due to the physical properties of the internal constituent material of the waterproof sheet.

  • PDF

CO2레이저 비임을 이용한 표면경화 처리중 형성된 AISI 4140의 잔류응력에 관한 연구 (A Study on the Residual Stress of AISI 4140 Formed during Surface Hardening Treatment by using the CO2 Laser Beam)

  • 박근웅;이준범;한유희;이상윤
    • 열처리공학회지
    • /
    • 제9권4호
    • /
    • pp.289-299
    • /
    • 1996
  • This study has been performed to investigate into some effects of power density and traverse speed of laser beam on the microstructure, hardness and residual stress of AISI 4140 treated by laser surface hardening technique. Optical micrograph has shown that large martensite and a small amount of retained austenite in outermost surface layer and fine lath martensite in inner surface hardened layer are formed under the condition of a given power density and traverse speed. Hardness measurements have revealed that as the power density increases at a given 2.0m/min of the traverse speed, the maximum hardness values of outermost surface hardened layer is increased from Hv=635 to Hv=670. X-ray analysis for residual stress has exhibited that low compressive residual stress values are obtained in center point of the cress section of surface hardened layer with in mid point between the edge and the center point, about 1.5mm from the center point, due simply to a difference in self-quenching rate. It has been shown that the higher the power density at a given traverse speed and the olwer the traverse speed at a given power density, the more the compressive residual stress values are increased due to an increase in the input heat of laser beam.

  • PDF

연속파형 Nd:YAG 레이저를 이용한 플라스틱성형용 금형강의 표면경화 특성 (Characteristics of Surface Hardening of Dies Steel for Plastic Molding using Continuous Wave Md:YAG Laser)

  • 신호준;유영태;오용석
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.71-81
    • /
    • 2009
  • Die steel for plastic molding were used as mold material of automobile parts and electronic component industry. The material of this paper has superior to mechanical properties, such as repair weldability, corrosion resistance and high temperature strength, required mold parts for semitransparent. Laser-induced surface hardening technology is widely adopted to improver fatigue life and wear resistance via localized hardening at the surface of mold parts. The objective of this research work is to investigate on the characteristics of surface hardening of the laser process parameters, such as beam travel speed, laser power and defocsued spot position, for the case of die steel for plastic molding. Lens for surface hardening of large area is plano-convex type with elliptical profile to maintain uniform laser irradiation. According to the experimental results, large size of hardened layer at the surface of die steel for plastic molding was achieved, and microstructure of this layer was lath martensite. Optimal surface status and mechanical property of hardened layer could be obtained at 1095Watt, $0.25{\sim}0.3m/min$, 0mm (focal length: 232mm) for laser power, beam travel speed, and focal position. Where, heat input was $0.793{\times}10^{3}J/cm^2$, and width of hardened layer was 27.58mm.

용융염 침적법에 의한 VC coating 금형강의 굽힘 피로강도에 관한 연구 (A study on the Bending Fatigue Strength of Die Steels coated with VC(Vanadium Carbide)by Immersing in Molten Borax Bath)

  • 이병권;남태운
    • 열처리공학회지
    • /
    • 제6권3호
    • /
    • pp.166-177
    • /
    • 1993
  • Bending fatigue strength tests were made for VC coated die steels which were coated by immersing in a molten borax bath and for hardened die steels which were quenched and tempered, in order to clarify the effect of VC coating at $1000^{\circ}C$ and $1025^{\circ}C$. The material used in this investigation was a representative cold and hot die steels STD11, STD61. The results obtained are as follows. 1) The endurance limit of VC coated die steels was a little lower than that of hardened die steels. It is considered to be mainly due to the decfl.lase of hardness in the substrates. Accordingly, the endurance limit reo covered almost to the level of hardened die steels by an additional diffusion treatment. 2) The initiation point of fatigue fracture of VC coated die steels in reversed bening was on the substrate just under the VC layer. Hence, the endurance limit is corrected to the hardness of this part. 3) But, there is a considerable scatter in this relationship and the endurance limit of VC coated die steels was a little lower than that of hardened die steels with equal hardness. These results suggest that the fatigue strength of VC coated die steels is determined not only by the hardness but also by other factors. For example. the residual stress in the substrate just under VC coating layer is one of the factors besides hardness which is mainly related to the retained austenite(${\gamma}_R$).

  • PDF

Arc melting으로 제조한 금속간화합물 Ni3Al, NiAl 및 TiAl의 미끄럼 마모특성 해석 (Analysis of Sliding Wear Properties for Arc-melted Intermetallic Compounds of Ni3Al, NiAl and TiAl)

  • 이한영;김태준;조용재
    • 대한금속재료학회지
    • /
    • 제47권5호
    • /
    • pp.267-273
    • /
    • 2009
  • Three types of structural intermetallic compounds, $Ni_3Al$, NiAl and TiAl, having each single phase structure without pores were produced by arc-melting process. Their sliding wear properties were investigated against a hardened tool steel. It was shown that the wear of the intermetallic compounds was hardly occurred against the hardened tool steel. TiAl compound showed the best wear resistance among them. In this case, wear was preferentially occurred on the surface of the hardened tool steel of the mating material which has higher hardness. It could be found that the wear mode on intermetallics without pores by arc-melting process was different from that on its porous layer coated on steel by combustion synthesis.

C계 유도경화 베어링강의 회전접촉 피로거동에 미치는 Mn 첨가의 영향 (Effect of Mn Addition on Rolling Contact Fatigue of C-Base Induction Hardened Bearing Steels)

  • 정경조;윤기봉;최병영
    • 열처리공학회지
    • /
    • 제8권3호
    • /
    • pp.205-212
    • /
    • 1995
  • Effect of Mn addition on rolling contact fatigue of C-base induction hardened bearing steels has been investigated to develop inexpensive surface-hardened bearing steels with improved resistance to rolling contact fatigue. Fatigue tests were conducted in elasto-hydrodynamic lubricating conditions at a shaft speed of 5,000rpm, under max. Hertzian stress of $492kg/mm^2$. It was found in the C-Mn steels that effective depth of induction hardened layer and amount of retained austenite were slightly increased in comparison with those of C-base steels. finer interlamellar spacing of pearlite in the C-Mn steels was also observed using TEM. Decomposition of retained austenite during rolling contact fatigue was smaller in quantity in the C-Mn steels than C-base steels. This might be associated with enhanced mechanical stability of retained austenite with addition of Mn. Statistical analysis of fatigue life for C-Mn steels using Weibull distribution indicated that improved resistance to rolling contact fatigue was mainly attributed to transformation induced plasticity and mechanical stability of retained austenite.

  • PDF

레이저 표면경화처리된 회주철의 내마모특성에 관한 연구 (Study on the Wear Resistance of Gray Cast Iron in Laser Surface Hardening)

  • 박근웅;한유희;이상윤
    • 열처리공학회지
    • /
    • 제9권4호
    • /
    • pp.271-280
    • /
    • 1996
  • This study has been performed to investigate into some effects of power density and traverse speed of laser beam on optical microstructure, hardness and wear characteristics of gray cast iron treated by laser surface hardening technique. Optical micrograph has shown that large martensite and a small amount of retained austenite appear in outermost surface layer with fine martensite in inside hardened zone. Hardness measurements have revealed that the range of maximun hardness value is $Hv=650{\pm}15$ and as the power density increases and the traverse speed decreses, the depth of hardened zone increases due to as increase in input power density. Wear test has exhibited that wear rasistance of laser surface hardened specimen is superier compared to that of untreated specimen under the condition of same load at a given sliding distance, showing that absorption results of an wxidized substance due to a heavy abrasion appear in untreated specimen. The amount of weight loss of laser surface hardened specimen with respect to sliding distance at a given load decreses with increasing traverse speed at a given power density and with increasing power density at a given traverse speed.

  • PDF

폴리에틸렌 튜브를 혼입한 경량 시멘트 경화체의 기초물성 평가 (An Evaluation on the Properties of the Hardened Lightweight Cement Using the Polyethylene Tube)

  • 김세영;전봉민;김효열;오상균
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 추계 학술논문 발표대회 논문집
    • /
    • pp.57-60
    • /
    • 2006
  • This study proposes the physical properties of the hardened lightweight cement using the polyethylene tube and to make the fundamental data regarding a new lightweight concrete development. The aerated concrete is displaying various effects such as lightweight, insulation characteristic and it is coming to be widely applied the slab layer of apartment as an insulating material but currently the aerated concrete has many problems. Therefore, demonstrating similar property of former aerated concrete and improving the defects, developing new hardened cement is needed. In this study, we predict adopting possibility of hollow core polyethylene tube, as a material to make cement hardening containing a lot of void. So we changed the mixing ratio, a diameter and length of the polyethylene tube and improved the compressive strength and unit capacity weight of the lightweight cement hardening body. From the test results, we judge that the aerated concrete is a developmental possibility.

  • PDF