• Title/Summary/Keyword: hard metal

검색결과 281건 처리시간 0.031초

산화물 분산 강화 강 분말이 첨가된 자동차 부품용 철계 복합 소재의 미세조직 및 마모 특성 (Microstructure and Wear Properties of Oxide Dispersion Strengthened Steel Powder Added Steel-Based Composite Material for Automotive Part)

  • 김영균;박종관;이기안
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.36-42
    • /
    • 2018
  • In order to expand the application of oxide dispersion-strengthened (ODS) steel, a composite material is manufactured by adding mechanically alloyed ODS steel powder to conventional steel and investigated in terms of microstructure and wear properties. For comparison, a commercial automobile part material is also tested. Initial microstructural observations confirm that the composite material with added ODS steel contains i) a pearlitic Fe matrix area and ii) an area with Cr-based carbides and ODS steel particles in the form of a $Fe-Fe_3C$ structure. In the commercial material, various hard Co-, Fe-Mo-, and Cr-based particles are present in a pearlitic Fe matrix. Wear testing using the VSR engine simulation wear test confirms that the seatface widths of the composite material with added ODS steel and the commercial material are increased by 24% and 47%, respectively, with wear depths of 0.05 mm and 0.1 mm, respectively. The ODS steel-added composite material shows better wear resistance. Post-wear-testing surface and cross-sectional observations show that particles in the commercial material easily fall off, while the ODS steel-added material has an even, smooth wear surface.

폴리머 몰드를 이용한 금속 나노분말의 미세부품 제조 (Fabrication of Micro Component of Metallic Nano Powder Using Polymer Mold)

  • 이우석;김상필;이혜문;배동식;최철진
    • 한국분말재료학회지
    • /
    • 제14권3호
    • /
    • pp.202-207
    • /
    • 2007
  • Novel polymer mold process for fabrication of microcomponents using metal nanopowders was developed and experimentally optimized. Polymer mold for forming green components was produced by using a hard master mold and polydimethylsiloxane (PDMS). In the preparation of metallic powder premix for the green components without any defect, 90 wt.% 17-4PH statinless steel nanopowders and 10 wt.% organic binder were mixed by a ball milling process. The green components with very clear gear shape were formed by filling the powder premix into the PDMS soft mold in surrounding at about $100^{\circ}C$. Cold isostatic pressing (CIP) was very potent process to decrease a porosity in the sintered microcomponent. The microgear fabricated by the improved process showed a good dimension tolerance of about 1.2%.

알루미늄 6061-T6 합금에 대한 양극산화층이 해수 내 부식 및 응력부식균열에 미치는 영향 (Effect on Anodizing Oxide Film for Aluminum 6061-T6 Alloy on Corrosion and Stress Corrosion Cracking in Seawater)

  • 신동호;황현규;정광후;김성종
    • 한국표면공학회지
    • /
    • 제53권5호
    • /
    • pp.219-226
    • /
    • 2020
  • This paper investigated the characteristics of anodized aluminum 6061-T6 alloy for corrosion and stress corrosion cracking(SCC) under natural seawater. The hard anodizing oxide film formed on the 6061-T6 was a uniform thickness of about 25 ㎛. The corrosion characteristics were performed with a potentiodynamic polarization test. SCC was characterized by a slow strain rate tensile test under 0.005mm/min rate. As a result, the anodizing film showed no significant effect on SCC in the slow strain rate test. However, the corrosion current density of base metal was measured to be approximately 13 times higher than that of the anodized specimen. Therefore, the anodizing film significantly improved the corrosion resistance of 6061-T6 alloy in natural seawater.

입도 분석을 통한 CMP 슬러리 에이징 효과 (CMP slurry aging effect by Particle Size analysis)

  • 신재욱;이우선;최권우;고필주;서용진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.37-40
    • /
    • 2003
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric (IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Micro-scratches are generated by agglomerated slurry, solidified and attached slurry in pipe line of slurry supply system. It is well known that the presence of hard and larger size particles in the CMP slurries increases the defect density and surface roughness of the polished wafers. In this paper, we have studied aging effect the of CMP slurry as a function of particle size. We prepared and compared the self-developed silica slurry by adding of abrasives before and after annealing. As our preliminary experiment results, we could be obtained the relatively stable slurry characteristics comparable to original silica slurry in the slurry aging effect.

  • PDF

WC/Co 초경 스크랩 산화물의 고체탄소에 의한 환원/침탄 (Carbothermal Reduction of Oxide Powder Prepared from Waste WC/Co Hardmetal by Solid Carbon)

  • 이길근;하국현
    • 한국분말재료학회지
    • /
    • 제12권2호
    • /
    • pp.112-116
    • /
    • 2005
  • In the present study, the focus is on the analysis of carbothermal reduction of oxide powder prepared from waste WC/Co hardmetal by solid carbon under a stream of argon for the recycling of the WC/Co hard-metal. The oxide powder was prepared by the combination of the oxidation and crushing processes using the waste $WC-8 wt.\%Co$ hardmetal as the raw material. This oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under a flowing argon atmosphere. The changes in the phase structure and gases discharge of the mixture during carbothermal reduction was analysed using XRD and gas analyzer. The oxide powder prepared from waste $WC-8wt.\%Co$ hardmetal has a mixture of $WO_{3} and CoWO_{4}$. This oxide powder reduced at about $850^{\circ}C$, formed tungsten carbides at about $950^{\circ}C$, and then fully transformed to a mixed state of tungsten carbide (WC) and cobalt at about $1100^{\circ}C$ by solid carbon under a stream of argon. The WC/Co composite powder synthesized at $1000^{\circ}C$ for 6 hours from oxide powder of waste $WC-8wt.\%Co$ hardmetal has an average particle size of $0.3 {\mu}m$.

Carbon and Cobalt Diffusion in Liquid Phase Sintering of WC-Co with Gradient Composition

  • Park, Dong-Kyu;Kim, Ki-Won;Jung, Woo-Hyun
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.635-636
    • /
    • 2006
  • In this study, the diffusion behaviors of C and Co in liquid phase sintering of WC-Co system were investigated whether these two components diffused in the same direction in case of having opposite gradient each other with not being $\eta$ phase. The green compacts with controlled compositions in not being of $\eta$ phase and gradient composition which one is WC-5Co-1.2%C, the other is WC-XCo-0.2%C (where X = 5, 10, 15, 20, 25) were sintered at $1350^{\circ}C$ and $1400^{\circ}C$ and then the diffusion behaviors of C and Co were investigated by analyses of compositional change, also determined for microstructure and microhardness. Also, same testing was carried out on the specimens with dual layers sintered in upright and reverse positions to evaluate the effect of gravity on the diffusion in liquid Co. From the results of this study, we can find the fact that the direction of diffusion for C and Co in WC-Co system during liquid phase sintering was different and the effect of gravity for the liquid was insignificant. Also other physical properties were changed on the diffusion of elements.

  • PDF

A comparative study on wear property of WC-CoCr and WC-CrC-Ni coatingssprayed by HVOF

  • Cho, J.Y.;Joo, Y.K.;Zhang, S.H.;Song, K.O.;Cho, T.Y.;Yoon, J.H.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.153-154
    • /
    • 2008
  • High velocity oxy-fuel (HVOF) thermal spraying coating has been used widely throughout the last 60 years mainly in defense, aerospace, and power plants. Recently this coating technique is considered as a promising candidate for the replacement of the traditional electrolytic hard chrome plating (EHC) which pollutes the environment and causes lung cancer by toxic hexa-valent $Cr^{6+}$. In this study, two kinds of cermet coatings, WC-CoCr and WC-CrC-Ni, are formed by HVOF spraying. The wear properties of coatings are evaluated comparatively by reciprocating sliding wear tests at $25^{\circ}C$, $250^{\circ}C$ and $450^{\circ}C$ respectively. Wear rates show that WC-CoCr coatings have better sliding wear resistance than WC-CrC-Ni coatings regardless of temperature due to more, compact and homogeneously distributed WC particles, less metal content, Co, Cr rich metallic bindermatrix with higher fracture strength and better adhesive strength with WC particles.

  • PDF

A Rapid and Simple Homogenizing Method for the Purification of Single-walled Carbon Nanotubes

  • Choi, Sang-Kyu;Jung, Seung-Il;Lee, Seung-Beck
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권5호
    • /
    • pp.209-212
    • /
    • 2008
  • We developed a simple and effective purification method to obtain high-purity single-walled carbon nanotubes (SWCNTs) with low surface damage. The purification process consists of oxidization at $430^{\circ}C$ for 1 h in a furnace system of air atmosphere and homogenization in dilute hydrochloric acid solution for extremely short time. The role of homogenizer was examined during purification process in terms of purity and quality of purified SWCNTs. High-purity and low surface damage of SWCNT products was obtained using homogenizer which was operated at 8500 rpm for 10 min in the environment of 7 % HCI solution. From XRD spectra, we observed that metal catalysts were thoroughly removed. Raman spectra showed that the intensity values of crystallization ($I_{G}/I_{D}$) of purified SWCNTs were very similar with that of pristine SWCNTs. Moreover, the structure damage of purified SWCNTs was hard to find from electron microscopy. Consequently, homogenizing, which is a quick and simple manner, can be promising method for obtaining final SWCNTs with clearly high purity and crystallinity.

DED 기술을 이용한 고속도 공구강 M4 분말 적층에 관한 연구 (Study of High Speed Steel AISI M4 Powder Deposition using Direct Energy Deposition Process)

  • 이은미;신광용;이기용;윤희석;심도식
    • 소성∙가공
    • /
    • 제25권6호
    • /
    • pp.353-358
    • /
    • 2016
  • Direct energy deposition (DED) is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In recent year, it can be widely used in order to produce hard, wear resistant and/or corrosion resistant surface layers of metallic mechanical parts, such as dies and molds. For the purpose of the hardfacing to achieve high wear resistance and hardness, application of high speed steel (HSS) can be expected to improve the tool life. During the DED process using the high-carbon steel, however, defects (delamination or cracking) can be induced by rapid solidification of the molten powder. Thus, substrate preheating is generally adopted to reduce the deposition defect. While the substrate preheating ensures defect-free deposition, it is important to select the optimal preheating temperature since it also affects the microstructure evolution and mechanical properties. In this study, AISI M4 powder was deposited on the AISI 1045 substrate preheated at different temperatures (room temperature to $500^{\circ}C$). In addition, the micro-hardness distribution, cooling rates, and microstructures of the deposited layers were investigated in order to observe the influence of the substrate preheating on the mechanical and metallurgical properties.

Prediction and Comparison of Electrochemical Machining on Shape Memory Alloy(SMA) using Deep Neural Network(DNN)

  • Song, Woo Jae;Choi, Seung Geon;Lee, Eun-Sang
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권3호
    • /
    • pp.276-283
    • /
    • 2019
  • Nitinol is an alloy of nickel and titanium. Nitinol is one of the shape memory alloys(SMA) that are restored to a remembered form, changing the crystal structure at a given temperature. Because of these unique features, it is used in medical devices, high precision sensors, and aerospace industries. However, the conventional method of mechanical machining for nitinol has problems of thermal and residual stress after processing. Therefore, the electrochemical machining(ECM), which does not produce residual stress and thermal deformation, has emerged as an alternative processing technique. In addition, to replace the existing experimental planning methods, this study used deep neural network(DNN), which is the basis for AI. This method was shown to be more useful than conventional method of design of experiments(RSM, Taguchi, Regression) by applying deep neural network(DNN) to electrochemical machining(ECM) and comparing root mean square errors(RMSE). Comparison with actual experimental values has shown that DNN is a more useful method than conventional method. (DOE - RSM, Taguchi, Regression). The result of the machining was accurately and efficiently predicted by applying electrochemical machining(ECM) and deep neural network(DNN) to the shape memory alloy(SMA), which is a hard-mechinability material.