• Title/Summary/Keyword: hard metal

Search Result 281, Processing Time 0.022 seconds

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Effects of Mn and C Addition on the Wear Resistance for the Recycled WC Dispersed Fe-base Hardfacing Weld (재생 WC 분산형 Fe계 하드페이싱 용접재료의 마모저항성에 미치는 Mn과 C 첨가의 영향)

  • Kang, Nam-hyun;Chae, Hyun-byung;Kim, Jun-ki;Choi, Jong-ha;Kim, Jeong-han
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.839-845
    • /
    • 2003
  • The abrasion and impact wear resistance were investigated on the hardfacing weld dispersed with the recycled hard metal(HM). The HM was composed of the tungsten carbide(WC) reinforced metal matrix composite. The cored wire filled with the 25-35wt.% HM and 2-8wt.% of the alloying element, Fe-75Mn- 7C(FeMnC), was used for the gas metal arc(GMA) welding. By using the cored wire of the 25wt.% HM and FeMnC addition, the weld showed mostly constant wear loss for the abrasion as a function of the FeMnC content. This was due to the insufficient amount of the tungsten carbide formed during the GMA welding. The FeMnC addition to the 35wt.% HM did not improve the abrasion wear property since the amount of the tungsten carbide formed was decreased with respect to the FeMnC amount. The 6wt.% FeMnC addition to the 35wt.% HM exhibited the better impact wear resistance than the hardfacing weld by 40wt.% HM.

A Study on the Manufacture of Composite W Powder for Low Sintering Temperature by Liquid Reduction Precipitation Method (액상환원침전법에 의한 저온활성화소결용 복합W분말의 제조방법 및 소결특성에 관한 연구)

  • 김창욱;이철;정인;윤성렬
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.207-218
    • /
    • 1995
  • Tungsten(W) metal has excellent properties in heat-resistance, corrison-resistance and impact-resistance but W-Metal is hard to sinter because higher than $2,000^{\circ}C$ is required to sinter W-powder. Con-sequently, a deposit technique of Nikel Phosphorus(NiP) on W-powber by the liquid reduction precipitation method was performed. Sintering temperature of the resulting W-NiP composite was lowered around to $1,000^{\circ}C$, and the mechanical properties of the sintered body was studied. The most suitable conditions for NiP thin film deposit on W-Powder by the liquid reduction precipitation method, which are composition, concentration, pH and temperature of the liquid reduction solution, were considered. The activated sintering was carried out in a reducing condition furnace. Components and properties of the sintered body were investigated by the density and the hardness measurements, X- ray diffraction analysis, and microscopic photographs of the surface. Quantity of NiP thin film on W-powder could be varied by the change of the liquid reduction solution composition. The sintering temperature of W-NiP composite powder is lowered to $950^{\circ}C$ from $2,000^{\circ}C$ and the hardness is increased (ca. 720 Hv). Large shrinkage could be observed since density was increased from 5.5 to 11.0 g/$cm^2$ which 86.2% of theoretical density. W metal and $Ni_3P$ crystal were detected through X-ray diffraction on the sintered body. Perfectly activated sintering was observed by microscopic photographs.

  • PDF

Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels

  • Karthick, K.;Malarvizhi, S.;Balasubramanian, V.;Krishnan, S.A.;Sasikala, G.;Albert, Shaju K.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.116-125
    • /
    • 2018
  • Modified 9Cr-1Mo ferritic steel is a preferred material for steam generators in nuclear power plants for their creep strength and good corrosion resistance. Austenitic stainless steels, such as type 316LN, are used in the high temperature segments such as reactor pressure vessels and primary piping systems. So, the dissimilar joints between these materials are inevitable. In this investigation, dissimilar joints were fabricated by the Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. The notch tensile properties and Charpy V-notch impact toughness properties of various regions of dissimilar metal weld joints (DMWJs) were evaluated as per the standards. The microhardness distribution across the DMWJs was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. Inhomogeneous notch tensile properties were observed across the DMWJs. Impact toughness values of various regions of the DMWJs were slightly higher than the prescribed value. Formation of a carbon-enriched hard zone at the interface between the ferritic steel and the buttering material enhanced the notch tensile properties of the heat-affected-zone (HAZ) of P91. The complex microstructure developed at the interfaces of the DMWJs was the reason for inhomogeneous mechanical properties.

A Preliminary Design Concept of the HYPER System

  • Park, Won S.;Tae Y. Song;Lee, Byoung O.;Park, Chang K.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.42-59
    • /
    • 2002
  • In order to transmute long-lived radioactive nuclides such as transuranics(TRU), Tc-99, and I- l29 in LWR spent fuel, a preliminary conceptual design study has been performed for the accelerator driven subcritical reactor system, called HYPER(Hybrid Power Extraction Reactor) The core has a hybrid neutron energy spectrum: fast and thermal neutrons for the transmutation of TRU and fission products, respectively. TRU is loaded into the HYPER core as a TRU-Zr metal form because a metal type fuel has very good compatibility with the pyre- chemical process which retains the self-protection of transuranics at all times. On the other hand, Tc-99 and I-129 are loaded as pure technetium metal and sodium iodide, respectively. Pb-Bi is chosen as a primary coolant because Pb-Bi can be a good spallation target and produce a very hard neutron energy spectrum. As a result, the HYPER system does not have any independent spallation target system. 9Cr-2WVTa is used as a window material because an advanced ferritic/martensitic steel is known to have a good performance under a highly corrosive and radiation environment. The support ratios of the HYPER system are about 4∼5 for TRU, Tc-99, and I-129. Therefore, a radiologically clean nuclear power, i.e. zero net production of TRU, Tc-99 and I-129 can be achieved by combining 4 ∼5 LWRs with one HYPER system. In addition, the HYPER system, having good proliferation resistance and high nuclear waste transmutation capability, is believed to provide a breakthrough to the spent fuel problems the nuclear industry is faced with.

Sintering Behavior and Mechanical Property of Transition Metal Carbide-Based Cermets by Spark Plasma Sintering (방전플라즈마 소결 공정 적용 전이금속 카바이드 서멧의 소결 및 기계적 특성)

  • Lee, Jeong-Han;Park, Hyun-Kuk;Hong, Sung-Kil
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.44-50
    • /
    • 2022
  • Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 ℃ (60 ℃min) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.

Esthetic Full Zirconia Fixed Detachable Implant-Retained Restorations Manufactured from Monolithic Zirconia : Clinical Report (Monolithic zirconia framework으로 제작된 fixed detachable prostheses를 이용한 심미적인 임플란트 전악 수복 증례)

  • Hong, Jun-Tae;Choi, Yu-Sung;Han, Se-Jin;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.3
    • /
    • pp.253-268
    • /
    • 2012
  • Full-mouth reconstruction of a patient using dental implants is a challenge if there is vertical and horizontal bone resorption, since this includes the gingival area and restricts the position of the implants. however, hard- and soft-tissue grafting may allow the implants to be placed into the desired position. Although it is possible to regenerate lost tissues, an alternative is to use fixed detachable prostheses that restore the function and the esthetics of the gingiva and teeth. Various material combinations including metal/acrylic, metal/ceramic, and zirconia/ceramic have been used for constructing this type of restoration. Other problems include wear, separation or fracture of the resin teeth from the metal/acrylic prosthesis, chipping or fracture of porcelain from the metal/ceramic or zirconia/ceramic prosthesis, and fracture of the framework in some free-end prostheses. With virtually unbreakable, chip-proof, life-like nature, monolithic zirconia frameworks can prospectively replace other framework materials. This clinical report describes the restoration of a patient with complete fixed detachable maxillary and mandibular prostheses made of monolithic zirconia with dental implants. The occluding surfaces were made of monolithic zirconia, to decrease the risk of chipping or fracture. The prostheses were esthetically pleasing, and no clinical complications have been reported after two years.

The Effect of a Au Based Bonding Agent Coating on Non-Precious Metals-Ceramic Bond Strength (비귀금속 합금에 적용한 Au Based Bonding Agent가 금속-도재 결합에 미치는 영향)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.4
    • /
    • pp.405-412
    • /
    • 2009
  • The purpose of this study investigated the effect of Au coating on adhesion between porcelain matrix and metal substructure interface. Titanium, Ni-Cr alloy and Co-Cr alloy are well known as proper metal for the dental restorations. The success of a porcelain fused to metal (PFM) restoration depends upon the quality of the porcelain-metal bond. However, adhesion between dental alloys and porcelain is related to diffusion of oxygen during ceramic firing. The excessive oxidized layers make hard adhesion between dental alloy and ceramic. Ni-Cr and Co-Cr specimens were divided into test and a control group and Titanium specimens were divided into three test groups and a control group. Each group had 20 specimens. The adhesion characteristics of porcelain and metal with Au coating layer and without Au coating layer were observed with scanning electron microscopy(SEM). The adhesion was evaluated by a biaxial flexure test and volume fraction of adherent porcelain was determined by SEM/EDS analysis. Result of this study suggest that Au coating layer is effective barrier to diffuse oxide layer completely protect non-precious alloys from oxidation during the porcelain firing. The SEM photomicrographs of cross-section specimens showed a smooth interface between Au coating layer and metals and porcelain which suggested proper chemical bonding, and no gap, porosity were observed. The mode of failure was mainly adhesive for Ti tested specimens, but mixed failures with adhesive and cohesive were observed in Ni-Cr and Co-Cr specimens. The adhesion between non-precious metals and porcelain would not be improved by Au coating agent. However, It is suggested that the continuous study is required further investigation and development.

  • PDF

Thermogravimetric Analysis of Wood and RDF for application to Gasification (가스화로의 확장을 위한 나무와 RDF의 열중량 분석)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.156-159
    • /
    • 2006
  • Gasification and melting method is one of the most potential means for waste treatment process with low emission of fly ash or heavy metal, dioxin and high possibility of using slags as resources. Moisture contents influences directly a gasification characteristics of waste. So it is necessary to investigate the effect of moisture contents in gasification. But it is hard to consider the effect of moisture contents, using samples of powder form of Milligram's order in existing thermogravimetric analyser. Therefore, we made a thermogravimetric analysis device to applicate samples of Gram's order. Gasification characteristics are typically reported with result from thermogravimetric analysis date for wood and RDF samples along with changing moisture contents. It is discussed the way to apply these analysis results to gasification and melting furnace.

  • PDF

Tribological properties of DLC films on polymers

  • Hashizume, T.;Miyake, S.;Watanabe, S.;Sato, M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.175-176
    • /
    • 2002
  • Our study is to search for tribological properties of diamond-like carbon (DLC) films as known as anti- wear hard thin film on various polymers. This report deals with the deposition of DLC films on various polymer substrates in vacuum by magnetron radio frequency (RF) sputtering method with using argon plasma and graphite, titanium target. The properties of friction and wear are measured using a ball-on-disk wear -testing machine. The properties of friction and wear have been remarkably improved by DLC coating. Moreover the composition of DLC films has been analyzed by using auger electron spectroscopy(AES). The wear rate of titanium-containing DLC film is lower than that of no-metal-containing DLC film.

  • PDF