• 제목/요약/키워드: hard coatings

검색결과 130건 처리시간 0.026초

알루미늄에 니켈-질화붕소-인과 니켈-질화붕소-붕소의 3원계 복합도금 (Composite Coating of Nickel-Boron Nitride-Phosphours and Nickel-Boron Nitride-Boron Ternary System on Aluminum)

  • 곽우섭;윤병하;김대용
    • 한국표면공학회지
    • /
    • 제19권3호
    • /
    • pp.83-91
    • /
    • 1986
  • Codeposited of boron nitride(BN) particle dispersed into electroless nickel-phosphours (Ni-P) and nickel-boron(Ni-B) platings were studied for the purpose of developing the wear resistance and lubricity. BN can be codeposited from electroless nickel plating bath with $NaH_2PO_2$ and $NaBH_4$ as the reducing agents. Most dispersolids were distributed uniformly in the Ni-P and Ni-B matrix. Abrasion loss decreased with increasing amount of codeposits and reached a constant value 2.4 percent by volume percent of BN particle. The wear resistance and the friction coefficient of the heat treated BN composite coatings were improved about three times than that of as-coatings. The BN composite coatings were more wear resistance than hard chromium. Ni-B-BN composite coatings showed lower wear resistance and friction coefficient than Ni-P-BN. The BN content of the deposite was found to be 2.4 v/o for these optium conditions.

  • PDF

A comparative study on wear property of WC-CoCr and WC-CrC-Ni coatingssprayed by HVOF

  • Cho, J.Y.;Joo, Y.K.;Zhang, S.H.;Song, K.O.;Cho, T.Y.;Yoon, J.H.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.153-154
    • /
    • 2008
  • High velocity oxy-fuel (HVOF) thermal spraying coating has been used widely throughout the last 60 years mainly in defense, aerospace, and power plants. Recently this coating technique is considered as a promising candidate for the replacement of the traditional electrolytic hard chrome plating (EHC) which pollutes the environment and causes lung cancer by toxic hexa-valent $Cr^{6+}$. In this study, two kinds of cermet coatings, WC-CoCr and WC-CrC-Ni, are formed by HVOF spraying. The wear properties of coatings are evaluated comparatively by reciprocating sliding wear tests at $25^{\circ}C$, $250^{\circ}C$ and $450^{\circ}C$ respectively. Wear rates show that WC-CoCr coatings have better sliding wear resistance than WC-CrC-Ni coatings regardless of temperature due to more, compact and homogeneously distributed WC particles, less metal content, Co, Cr rich metallic bindermatrix with higher fracture strength and better adhesive strength with WC particles.

  • PDF

초고속 스핀들의 내구성 향상을 위한 WC-Co 분말의 HVOF 용사 코팅 (HVOF Thermal Spray Coating of WC-Co for Durability Improvement of High Speed Spindle)

  • 김길수;백남기;윤재홍;조동율;윤석조;오상균;황순영;천희곤
    • 한국표면공학회지
    • /
    • 제39권4호
    • /
    • pp.179-189
    • /
    • 2006
  • High velocity oxygen fuel(HVOF) thermal spray coating of WC-Co powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen and the brittleness of ceramics coating. WC-Co micron and nano powder were coated by HVOF thermal spraying method for the study of durability improvement of the high speed spindle. Coatings were planned by Taguchi program for the four spray parameters of spray distance, flow rates of hydrogen, oxygen and powder feed rate. Optimal coating process was obtained by the studies of coating properties such as porosity, surface roughness, micro hardness, and micro structure. WC-Co micron and nano powder were coated on the Inconel 718 substrate by the optimal coating process obtained in this study. The wear behaviors were studied by the sliding wear tester at room temperature and at an elevated temperature of $500^{\circ}C$ for the application to high speed spindle. Sliding wear test was carried out for four most promising hard coatings of chrome coating, ceramics coatings such as $A1_2O_3,\;Cr_2O_3$ and HVOF Co-alloy T800 for the comparison of their wear behaviors. HVOF WC-Co coating was better than other coatings showing highest micro hardness of 1400 Hv and comparable friction coefficients with others. HVOF WC-Co coating is a strong candidate for the replacement of the traditional hard chrome plating for the high speed spindle.

드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구 (A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools)

  • 강용진;김도현;장영준;김종국
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

디젤엔진 피스톤 링 코팅 층의 경도에 따른 마찰특성 (Effect of Coating Layer Hardness on Frictional Characteristics of Diesel Engine Piston Ring)

  • 장정환;주병돈;이호진;김은화;문영훈
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.465-470
    • /
    • 2009
  • The frictional behaviors of Cermets/Cr-Ceramics and Cu-Al coatings of piston ring were investigated. Friction tests were carried out by pin-on-disk test and materials properties of coating layer were analyzed by nano indentation tester. The effect of surface roughness of cylinder liner on the friction coefficient was analyzed. This study provided tribological data of hard and soft piston ring coatings against cylinder liner. The surface roughness does exert an influence on the average friction coefficient, with smoother surfaces generally yielding lower friction coefficients. In case of hard-coating, the scratch depth, width and pile-up height had close relationship with hardness. So the scratch width, depth and pile-up height increases with decreasing friction coefficient. But in case of soft-coating, the friction coefficients are strongly dependent on the morphological characteristics such as, scratch depth, width, pile-up height and elastic modulus.

고분자 안경 렌즈의 재질별 화학적 식각 반응성 비교 (Comparison of Properties of Polymer Based Glass Lenses by Chemical Etching Reaction)

  • 이정화;노혜란
    • 한국안광학회지
    • /
    • 제17권2호
    • /
    • pp.119-126
    • /
    • 2012
  • 목적: 안경 렌즈 코팅 막을 불화수소산을 이용하여 상온에서 단시간 화학적으로 식각한 뒤 코팅 막과 렌즈 원재료의 변화를 살펴보고자 하였다. 방법: GRAY 70%로 염색된 vinyl ester계 고분자(Lens A)와 thiourethane계 고분자렌즈(Lens B)를 불화수소산을 이용해 5분, 10분 또는 15분 동안 식각한 뒤 재료의 기계적 물성과 하드코팅과 반사방지코팅 등 코팅 막의 손상 정도, 그리고 굴절률 광투과율 등 렌즈의 특성 변화를 관찰하였다. 결과: 두 재료 모두 식각 전과 후의 굴절력에는 큰 변화가 없었지만 반사방지코팅과 하드코팅이 차례로 제거되었고 렌즈 표면에도 손상을 주어 UV 투과율이 증가되었으며 기계적 물성은 소하였다. 화학적 식각으로 인한 렌즈의 물성 변화는 thiourethane계 고분자 렌즈에서 더 크게 나타났다. 결론: 고분자 재료의 특성에 따라 불화수소산에 대한 반응성이 다르기 때문에 식각에 따른 렌즈 자체의 물성 변화가 다르게 나타남을 알 수 있었다.

라텍스 입자구조가 필름형성 및 필름물성에 미치는 영향 (III);모델 복합라텍스 입자의 필름물성 (Effect of Latex Particle Morphology on the Film Formation and Film Properties of Acrylic Coatings (III);Film Properties of Model Composite Latex)

  • 주인호;변자훈;우종표
    • 한국응용과학기술학회지
    • /
    • 제21권3호
    • /
    • pp.259-266
    • /
    • 2004
  • Film properties of monodispersed model composite latexes with particle size of 190 nm, which consist of n-butyl acrylate as a soft phase monomer and methyl methacrylate as a hard phase monomer with different morphology was examined. Five different types of model latexes were used in this study such as random copolymer particle, soft-core/hard-shell particle, hard-core/soft-shell particle, gradient type particle, and mixed type particle. Tensile strength and tensile elongation at break of final films were evaluated. Those properties can be interpreted in terms of PBA/PMMA phase ratio and their morphology. The interfacial adhesion strength was also evaluated using $180^{\circ}$ peel strength measurement and cross hatch cutting test.

Hertzian Crack Suppression and Damage Tolerance of Silicon Nitride Bilayer

  • Lee, Kee-Sung;Kim, Do-Kyung;Lee, Seung-Kun;Lawn, Brian R.
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.356-362
    • /
    • 1998
  • Hertzian crack suppression phenomena and relatively high damage tolerance were investigated in hard/soft silicon nitride ($Si_3N_4$) bilayers. Coarse $\alpha}-Si_3N_4$ powder was wsed for the hard coating layer and fine $\alpha}-Si_3N_4$ powder was used for the soft substrate layer. The two layers were designed with a strong interface. Hertzian indentation was used to investigate contact fracture and damage tolerance property. Hertzian crack suppression has occurred with increasing applied load and decreasing coating thickness. The crack suppression contributed strength improvement, especially in the bilayers with thinner coatings. Ultimately, the combination of hard coating with soft but tough underlayer improved the damage tolerance of brittle $Si_3N_4$ ceramics.

  • PDF