• Title/Summary/Keyword: haptic sensation

Search Result 38, Processing Time 0.032 seconds

A Study on Gilles Deleuze's "Francis Bacon: The Logic of Sensation" - Focused on the Concept of 'Haptique' - (들뢰즈의 『감각의 논리』에 관한 연구 - '햅틱 Haptique' 개념을 중심으로 -)

  • Jin, Gi-haeng
    • Journal of Korean Philosophical Society
    • /
    • v.145
    • /
    • pp.381-407
    • /
    • 2018
  • Gilles Deleuze presents his distinctive logic of sensation in "Francis Bacon: The Logic of Sensation" with his own approach to Bacon's paintings. What matters here is the sensation of 'haptic' that is 'one possibility of the eyes' but different from optical perception. The concept of 'haptic' has been translated into Korean variously, and Gilles Deleuze adopted this concept from Austrian art historian, Alois Riegl. Alois Riegl had used the concept of 'haptic' to mean proximate view (Nahsicht in German) as in seeing Egyptian bas-relief. Gilles Deleuze was in succession to Alois Riegl's way of thinking and used the concept of 'haptic' to discuss Bacon's paintings. By the way, Alois Riegl had adopted this concept anyway to read Egyptian bas-reliefs, but Gilles Deleuze applies this concept to paintings. Actually, this concept in Gilles Deleuze's theory of painting has more meanings than Alois Riegl'. That is to say, when we intend to understand "The Logic of Sensation" as a new logic of sensation to be represented more than just a discussion about Bacon's paintings, we would say that key word is the concept of 'haptic' being symbolic of Bacon's paintings. Yet, what kind of sensation is the 'haptic'? And, what is Deleuze's theory of sensation? I want to interpret "Francis Bacon: The Logic of Sensation" as a work being developed through his own theory of sensation, and further more I should like to draw special attention to the sensation of 'haptic' in order to make his theory of sensation with admirable clarity.

A Study on the Multi-sensory Preferences and Image Influences of Outdoor Leisure Spaces (옥외여가공간의 다중감각 선호 및 이미지 영향력 연구)

  • Yun Hee-Jeong;Im Seung-Bin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.3 s.116
    • /
    • pp.23-31
    • /
    • 2006
  • Multi-sensory design results from sensory design paradigm and image centricism, which stimulates 5 sensation; visual, auditory, haptic, smell and taste sensation when we experience environment. This is helpful for designing outdoor space considering integrated sensation not only visual and auditory sensation as well as for improving visitor's satisfaction. Therefore, this study mainly intended to analyse the multi-sensory preference and the image influence of outdoor leisure space. For these purpose, this study selected 3 leisure spaces around Seoul city; Gwan-ak mountain(the type oriented natural resource), Insa-dong(the type oriented cultural resource) and Seoul land as theme park(the type oriented facility) and a survey was performed with a total of 204 visitors at the above spaces in winter and summer. The results of this study indicate that visual sensation was evaluated most high at 3 outdoor leisure spaces in both winter and summer. Visitors at Gwan-ak mountain and Seoul land prefer visual and haptic sensation, but visitors at Insa-dong prefer visual and haptic sensation in summer, visual and taste sensation in winter. Above all, this study led the designer to consider diverse sensation to access leisure space, especially haptic sense, which can be an effective design strategy to satisfy visitors.

Trends on Non-contact Haptic Display Technology (비접촉식 촉감 디스플레이 기술 동향)

  • Hwang, I.;Kim, J.R.;Yun, S.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.95-102
    • /
    • 2018
  • With the widespread use of multifunctional devices, haptic sensation is a promising type of sensory channel because it can be applied as an additional channel for transferring information for traditional audiovisual user interfaces. Many researchers have shed new light on non-contact haptic displays for their potential use on ambient and natural user interfaces. This paper introduces several of the latest schemes for creating a mid-air haptic sensation based on their transfer medium: ultrasonic phased arrays, air nozzles, thermal and plasmonic lasers, and electromagnets. We describe the principles used in delivering haptic sensation in each technology, as well as state-of-the-art technologies from leading research groups, and brief forecasts for further research directions.

Haptic System to Provide the Realistic Sensation of Virtual Impact (사실적인 가상 임팩트 감각 전달을 위한 햅틱 시스템)

  • Jechan Jeon;Jaeyoung Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.23-29
    • /
    • 2023
  • As an effort to maximize the immersiveness of user experience in virtual reality, there have been constant efforts to provide a user with tactile sensation by providing haptic feedback. Most of the haptic feedback methods, however, can create only limited or unrealistic haptic sensations since they utilize affordable actuators such as a vibrotactile actuator. When it comes to martial arts training or a game, the limitation of such haptic feedback is apparent due to the significant difference between the physical impact of hitting an object and the sensation departed from a vibrotactile actuator. Noting this, we proposed a haptic impact system that can create a haptic impact when the user hits a virtual object with the fist. The haptic interface uses a quick-return mechanism that can deliver haptic impact feedback to a user's fist. The realism of the haptic impact was evaluated by conducting a human-subject experiment. The results indicate a significant effect of haptic feedback on the realism of the virtual impact.

Augmented Reality Haptic Upper Garment for Wear Sensation (착용감 구현을 위한 증강현실용 햅틱 상의(上衣))

  • Yim, Eunhyuk;Kwon, Jeanne;Lee, Sooyong
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 2019
  • Haptic systems have been widely used for both virtual reality and augmented reality application including game, entertainment, education and medical sectors. Clothing designers and retailers initiated using AR and VR technologies to help the consumers find style with the perfect fit. Most of the developed augmented reality shopping is implemented by overlapping the image of the clothes on the customer so that he/she can find the fit. However, those are only visual information and the customer cannot experience the real size and the stiffness of the clothes. In this paper, we present the haptic upper garment which provides the haptic feedback to the user using cables. By controlling the length of the cable, the size of the clothes is set and by stiffness control, the compliance of the fabric is implemented. The haptic garment is modeled for precise control and the distributed controller architecture is described. With the haptic upper garment, the user's experience of the virtual clothes is greatly enhanced.

A Review of Haptic Perception: Focused on Sensation and Application

  • Song, Joobong;Lim, Ji Hyoun;Yun, Myung Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.715-723
    • /
    • 2012
  • Objective: The aim of this study is to investigate haptic perception related researches into three perspectives: cutaneous & proprioceptive sensations, active & passive touch, and cognition & emotion, then to identify issues for implementing haptic interactions. Background: Although haptic technologies had improved and become practical, more research on the method of application is still needed to actualize the multimodal interaction technology. Systematical approached to explore haptic perception is required to understand emotional experience and social message, as well as tactile feedback. Method: Content analysis were conducted to analyze trend in haptic related research. Changes in issues and topics were investigated using sensational dimensions and the different contents delivered via tactile perception. Result: The found research opportunities were haptic perception in various body segments and emotion related proprioceptive sensation. Conclusion: Once the mechanism of how users perceives haptic stimuli would help to develop effective haptic interactrion and this study provide insights of what to focus for the future of haptic interaction. Application: This research is expected to provide presence, and emotional response applied by haptic perception to fields such as human-robot, human-device, and telecommunication interaction.

A Haptic Mouse for an Immersive Interface (몰입형 인터페이스를 위한 햅틱 마우스)

  • Kim, Da-Hye;Cho, Seong-Man;Kim, Sang-Youn
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.9
    • /
    • pp.1210-1220
    • /
    • 2011
  • In this paper, we suggest a haptic mouse system as an immersive interface between virtual environment and a human operator. The proposed haptic mouse creates vibrotacitle and thermal sensation to increase the immersion. The vibrotactile module is composed of eccentric motors and a solenoid actuator, and the thermal module consists of a thin-film resistance temperature detector and a Peltier thermoelectric heat pump. In order to evaluate the proposed haptic mouse system, we develop a simple racing game and conduct an experiment. The result of the experiment shows that the proposed haptic mouse system can improve the sense of reality in virtual environment and can be used as an effective interface between virtual environment and a human operator.

Development of exoskeletal type tendon driven haptic device (텐던 구동방식의 장착형 역/촉감 제시기구의 개발에 관한 연구)

  • 이규훈;최혁렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1285-1288
    • /
    • 1997
  • The basic technology of virtual reality can be described as the cognition of the condition change in virtual world by stimulating the visual, auditory, kinesthetic and tactile sensation. Among these, the kinesthetic and tactile sensation is one of the most important things to recognize the interaction. In this paper, it is addressed the haptic device which help the human feel the sense of the operator, and is designed in modular type to expand for five fingers later. the haptic device is driven by tendon and ultrasonic motors located in the wrist part. Each joint is actuated by coupled tendons and adopts more actrator by one than the number of the joints, called 'N+1 type'. The haptic device adopts metamorphic 4-bar linkage structure and the length of linkages, shape and the location of joint displacement sensor are optimized through the analysis.

  • PDF

모바일 기기용 햅틱스를 위한 센서 및 구동기

  • Kim, Sang-Youn
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1683-1687
    • /
    • 2009
  • This paper addresses a haptic actuator which can be applied to mobile devices. For haptic feedback in mobile devices, we have to consider not only stimulating force and frequency but also the size and the power consumption of a haptic module. Thus far, vibration motors have been widely used in mobile devices to provide tactile sensation. The reason is that a vibration motor is small enough to be inserted into a mobile device. This paper addresses vibrotactile actuators and other haptic actuators which can generate a wide variety of tactile sensations.

  • PDF

A New Haptic Actuator based on Cellulose Acetate (셀룰로오스 아세테이트 기반의 햅틱 액추에이터)

  • Kim, Sang-Youn;Kim, Dong-Gu;Yun, Sung-Ryul;Kyung, Ki-Uk;Kim, Jae-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1259-1264
    • /
    • 2011
  • This paper suggests a new film-type haptic actuator based on cellulose acetate electro-active paper. Conventional tiny haptic actuators in mobile devices can create vibrotactile sensation at only near resonant frequency. The strategy of operating near the resonant frequency, however, brought a new issue for creating vibrotactile sensation which can be strong enough to feel in arbitrary frequency. Another problem is that the size of the conventional actuator is not small enough to be embedded into slim mobile devices. In order to achieve these issues, we propose a thin and tiny actuator based on a cellulose acetate material charged with an electric potential. The motion of the actuator can be a concave or a convex by controlling a polarity of both charged membranes and the actuator performance can be modulated by increasing level of biased electric potential.