• 제목/요약/키워드: haptic

검색결과 583건 처리시간 0.033초

POMY: 햅틱 피드백을 적용한 몰입형 영어 학습 시스템 (POMY: POSTECH Immersive English Study with Haptic Feedback)

  • 이재봉;이규송;;이호진;이근배;최승문
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.815-821
    • /
    • 2014
  • In this paper, we propose a novel CALL (Computer-Assisted Language Learning) system, which is called POMY (POSTECH Immersive English Study). In our system, students can study English while talking to characters in a computer-generated virtual environment. POMY also supports haptic feedback, so students can study English in a more interesting manner. Haptic feedback is provided by two platforms, a haptic chair and a force-feedback device. The haptic chair, which is equipped with an array of vibrotactile actuators, delivers directional information to the student. The force-feedback device enables the student to feel the physical properties of an object. These haptic systems help the student better understand English conversations and focus on studying. We conducted a user experiment and its results showed that our haptic-enabled English study contributes to better learning of English.

가상현실을 위한 다중 접촉 실시간 햅틱 랜더링 (Real-Time Haptic Rendering for Multi-contact Interaction with Virtual Environment)

  • 이경노;이두용
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.663-671
    • /
    • 2008
  • This paper presents a real-time haptic rendering method for multi-contact interaction with virtual environments. Haptic systems often employ physics-based deformation models such as finite-element models and mass-spring models which demand heavy computational overhead. The haptic system can be designed to have two sampling times, T and JT, for the haptic loop and the graphic loop, respectively. A multi-rate output-estimation with an exponential forgetting factor is proposed to implement real-time haptic rendering for the haptic systems with two sampling rates. The computational burden of the output-estimation increases rapidly as the number of contact points increases. To reduce the computation of the estimation, the multi-rate output-estimation with reduced parameters is developed in this paper. Performance of the new output-estimation with reduced parameters is compared with the original output-estimation with full parameters and an exponential forgetting factor. Estimated outputs are computed from the estimated input-output model at a high rate, and trace the analytical outputs computed from the deformation model. The performance is demonstrated by simulation with a linear tensor-mass model.

충돌감지 알고리듬을 적용한 햅틱 핸드 컨트롤러의 제어 (Control of Haptic Hand Controller Using Collision Detection Algorithm)

  • 손원선;조경래;송재복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.992-995
    • /
    • 2003
  • A haptic device operated by the user's hand can receive information on position and orientation of the hand and display force and moment generated in the virtual environment to the hand. For realistic haptic display, the detailed information on collision between objects is necessary. In the past, the point-based graphic environment has been used in which the end effector of a haptic device was represented as a point and the interaction of this point with the virtual environment was investigated. In this paper, the shape-based graphic environment is proposed in which the interaction of the shape with the environment is considered to analyze collision or contact more accurately. To this end. the so-called Gilbert-Johnson-Keerthi (GJK) algorithm is adopted to compute collision points and collision instants between two shapes in the 3-D space. The 5- DOF haptic hand controller is used with the GJK algorithm to demonstrate a peg-in-hole operation in the virtual environment in conjunction with a haptic device. It is shown from various experiments that the shape-based representation with the GJK algorithm can provide more realistic haptic display for peg-in-hole operations.

  • PDF

자동차 네비게이션 시스템을 위한 햅틱 시트의 평가에 관한 연구 (Evaluation of Haptic Seat for Vehicle Navigation System)

  • 장원석;김석환;편종권;지용구
    • 대한인간공학회지
    • /
    • 제29권4호
    • /
    • pp.625-629
    • /
    • 2010
  • This study has confirmed that subjective positive and negative aspects a driver feels by applying haptic seat on a vehicle to substantiate vehicle navigation system. Our experiment with total twenty subjects provides that the reaction time (RT) is superior in haptic interface than visual or auditory interface but subjective satisfaction, which subjects feel, and workload is less low in a simulator environment. Although, the difference of individuals and unfamiliarity is relatively high inasmuch as the experiment of absolutely new technology, but overall satisfaction of haptic seat is high. The result of study provides some consideration and direction to need in implementation of a haptic seat and it also confirms their possibility meaningfully. We expect the interaction between a driver and a vehicle and safety improvement potentially through applied haptic seat on actual vehicles.

햅틱보조설계 기반의 설계변수 조절이 가능한 햅틱의자의 설계 (Design of Haptic Chair based on Haptic-Aided Design Capable of Design Parameter Adjustment)

  • 허석행;김영걸;송재복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.860-864
    • /
    • 2008
  • In modern society, people tend to spend their time on various types of chairs. However, it is not easy for a designer to design a comfortable chair, because satisfaction with the chair depends not only on the quantitative elements such as size, but also on the qualitative element such as the user's feeling. To deal with these problems, there have been many studies on designing an ergonomics chair. In this paper, the hapticaided design (HAD) system was adopted to design the ergonomics chair. Based on the HAD system, the designer can experience whether the chair is comfortable or not through the haptic device, and also can modify the design parameters instantaneously. The haptic chair capable of controlling the design parameters in real time was proposed as a haptic simulator. The controllable parameters such as the seat height, reclining angle, stiffness of the backrest, and so on were selected based on the previous researches related to ergonomics chairs. It will reduce the development cost and time by replacing the process of making the real mock-up and prototype with the haptic chair.

  • PDF

진동모터로 구성된 햅틱 디바이스를 이용한 장애물 정보 전달 및 제어 방법 (Obstacle Information Transfer and Control Method using Haptic Device consist of Vibration Motors)

  • 이동혁;노경욱;강선균;한종호;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권10호
    • /
    • pp.1036-1043
    • /
    • 2014
  • In this paper, a new haptic device is proposed for the teleoperation, which can recognize the invisible environment of a mobile robot. With this new device, it is possible for the user to identify the location of an obstacle and to avoid it. The haptic device has been attached on the top of a joystick so that the user can remotely control the mobile robot to avoid the obstacles which are recognized by the ultrasonic sensors. Also, the invisible environment is recognized more accurately overlapping the data from the ultrasonic sensors. There are five vibration motors in the haptic device to indicate the direction of the obstacle. So the direction of the obstacle can be recognized by the vibration at the finger on each vibration motor. For various situations and surrounding environments, experiments are performed using fuzzy controller and overlapping ultrasonic sensors. The results demonstrate the effectiveness of the proposed haptic joystick.

비 동기화된 촉각과 영상 시간지연이 원격조종로봇에 미치는 영향과 성능 향상을 위한 조언 (The Effect of Asynchronous Haptic and Video Feedback on Teleoperation and a Comment for Improving the Performance)

  • 김혁;유지환
    • 제어로봇시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.156-160
    • /
    • 2012
  • In this paper, we investigate the effect of asynchronous haptic and video feedback on the performance of teleoperation. To analyze the effect, a tele-manipulation experiment is specially designed, which operator moves square objects from one place to another place by using master/slave telerobotic system. Task completion time and total number of falling of the object are used for evaluating the performance. Subjective study was conducted with 10 subjects in 16 different combinations of video and haptic feedback while participants didn't have any prior information about the amount of each delay. Initially we assume that synchronized haptic and video feedback would give best performance. However as a result, we found that the accuracy was increased when haptic and video feedback was synchronized, and the completion time was decreased when one of the feedback (either haptic or video) was decreased. Another interesting fact that we found in this experiment is that it showed even better accuracy when haptic information arrives little bit earlier than video information, than the case when those are synchronized.

가상질량과 저주파통과필터에 의한 햅틱 시스템의 안정성 영역에 관한 연구 (A Study for the Effect of a Virtual Mass with a Low-Pass Filter on a Stability of a Haptic System)

  • 이경노
    • 융복합기술연구소 논문집
    • /
    • 제7권2호
    • /
    • pp.25-30
    • /
    • 2017
  • This paper presents the effects of a virtual mass with a low-pass filter on the stability boundary of a virtual spring in the haptic system. In general, a haptic system consists of a haptic device, a sampler, a virtual impedance model and zero-order-hold. The virtual impedance is modeled as a virtual spring and a virtual mass. However the high-frequency noise due to the sampling time and the quantization error of sampled data may be generated when an acceleration is measured to compute the inertia force of the virtual mass. So a low-pass filter is needed to prevent the unstable behavior due to the high-frequency noise. A finite impulse response (FIR) filter is added to the measurement process of the acceleration and the effects on the haptic stability are simulated. According to the virtual mass with the FIR filter and the sampling time, the stability boundary of the virtual spring is analyzed through the simulation. The maximum available stiffness to guarantee the stable behavior is reduced, but simulation results still show that the stability boundary of the haptic system with the virtual mass is larger than that of the haptic system without the virtual mass.

Development of a haptic communication system for fashion image experience in a virtual environment

  • Kim, Jongsun;Choi, Dongsoo;Kim, Sangyoun;Ha, Jisoo
    • 복식문화연구
    • /
    • 제28권5호
    • /
    • pp.705-718
    • /
    • 2020
  • The goal of this study was to develop a haptic communication system that can convey the tactile sensation of fashion materials in a virtual environment. In addition, the effectiveness and how realistically the virtual fabric image of this system delivers the tactile sensation of actual fabric was verified. First, a literature review was conducted through which the tactile attributes of fashion materials were defined that would be implemented in the haptic communication system. Then, a questionnaire for evaluating the tactile attributes of fashion materials was developed. Next, a haptic communication system was designed to convey fashion image experiences in a virtual environment, from which a haptic rendering model was suggested. The effectiveness of the haptic communication system was evaluated by verifying user experiences with questions developed through a user evaluation experiment. The validity of the evaluation questions pertaining to the tactile attributes and the effects of the haptic communication system were verified. Factor analysis was conducted to verify the evaluation of the tactile sense attributes of the fashion material, which identified density, thickness, and elasticity of the material as key factors. As a result of comparisons between the tactile sense through haptic characteristics and through touching, it was observed that regarding density and thickness, tactile sense experience led to greater perceived reality, while this was not the case for elasticity.

역/촉감 햅틱 상호작용을 위한 "K-$Touch^{TM}$" API 개발 - 햅틱(Haptic) 개발자 및 응용분야를 위한 소프트웨어 인터페이스 - (Development of K-$Touch^{TM}$ API for kinesthetic/tactile haptic interaction)

  • 이범찬;김종필;류제하
    • 한국HCI학회논문지
    • /
    • 제1권2호
    • /
    • pp.1-8
    • /
    • 2006
  • 본 논문은 새로운 햅틱 API인 "K-$Touch^{TM}$"의 개발에 관한 것으로 역/촉감 상호작용이 가능하도록 설계된 소프트웨어 아키텍처이다. K-$Touch^{TM}$는 햅틱 세부 기술을 잘 알지 못해도 응용분야를 쉽게 제작할 수 있도록 구성되어 있으며, 햅틱 기술을 개발하는 개발자가 쉽게 개발 내용을 추가할 수 있도록 구성되어 있다. 그래픽 하드웨어 기반의 핵심 역감 알고리즘을 기반으로 개발된 K-$Touch^{TM}$ API는 가상 환경을 구성하는 다양한 데이터 형식(2D, 2.5D depth(height field), 3D polygon 및 볼륨 데이터)에 대한 햅틱 상호작용을 가능하게 하고, 새로운 햅틱 알고리즘 및 장치 개발에 필요한 소프트웨어 확장성을 제공함과 동시에 사용자가 쉽고 빠르게 햅틱 응용분야를 개발할 수 있도록 설계되었다. 아울러 햅틱 감각의 중요 요소인 역감 및 촉감 상호작용을 위해 기존의 햅틱 SDK 및 API와 달리 역/촉감을 동시에 렌더링할 수 있는 알고리즘이 개발되었다. 본 논문에서 제안하는 새로운 햅틱 API의 효용성을 검증하기 위해 다양한 응용분야의 예를 구현하였다. 새로운 햅틱 API인 K-Touch는 사용자 및 연구자에게 보다 효율적으로 햅틱 연구를 진행 할 수 있도록 도움을 주는 툴킷(Toolkit)으로써 중요한 역할을 할 것으로 기대된다.

  • PDF