• Title/Summary/Keyword: handwritten letter recognition

Search Result 9, Processing Time 0.024 seconds

Adaptive Character Segmentation to Improve Text Recognition Accuracy on Mobile Phones (모바일 시스템에서 텍스트 인식 위한 적응적 문자 분할)

  • Kim, Jeong Sik;Yang, Hyung Jeong;Kim, Soo Hyung;Lee, Guee Sang;Do, Luu Ngoc;Kim, Sun Hee
    • Smart Media Journal
    • /
    • v.1 no.4
    • /
    • pp.59-71
    • /
    • 2012
  • Since mobile phones are used as common communication devices, their applications are increasingly important to human's life. Using smart-phones camera to collect daily life environment's information is one of targets for many applications such as text recognition, object recognition or context awareness. Studies have been conducted to provide important information through the recognition of texts, which are artificially or naturally included in images and movies acquired from mobile phones. In this study, a character segmentation method that improves character-recognition accuracy in images obtained from mobile phone cameras is proposed. The proposed method first classifies texts in a given image to printed letters and handwritten letters since segmentation approaches for them are different. For printed letters, rough segmentation process is conducted, then the segmented regions are integrated, deleted, and re-segmented. Segmentation for the handwritten letters is performed after skews are corrected and the characters are classified by integrating them. The experimental result shows our method achieves a successful performance for both printed and handwritten letters as 95.9% and 84.7%, respectively.

  • PDF

Real-Time Handwritten Letters Recognition On An Embedded Computer Using ConvNets (합성곱 신경망을 사용한 임베디드 시스템에서의 실시간 손글씨 인식)

  • Hosseini, Sepidehsadat;Lee, Sang-Hoon;Cho, Nam-Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.84-87
    • /
    • 2018
  • Handwritten letter recognition is important for numerous real-world applications and many topics like human-machine interaction, education, entertainment, and more. This paper describes the implementation of a real-time handwritten letters recognition system on a common embedded computer. Recognition is performed using a customized convolutional neural network, which was designed to work with low computational resources such as the Raspberry Pi platform. The experimental results show that the proposed real-time system achieves an outstanding performance in the accuracy rate and the response time for recognition of twenty-six handwritten letters.

  • PDF

Improved Handwritten Hangeul Recognition using Deep Learning based on GoogLenet (GoogLenet 기반의 딥 러닝을 이용한 향상된 한글 필기체 인식)

  • Kim, Hyunwoo;Chung, Yoojin
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.495-502
    • /
    • 2018
  • The advent of deep learning technology has made rapid progress in handwritten letter recognition in many languages. Handwritten Chinese recognition has improved to 97.2% accuracy while handwritten Japanese recognition approached 99.53% percent accuracy. Hanguel handwritten letters have many similar characters due to the characteristics of Hangeul, so it was difficult to recognize the letters because the number of data was small. In the handwritten Hanguel recognition using Hybrid Learning, it used a low layer model based on lenet and showed 96.34% accuracy in handwritten Hanguel database PE92. In this paper, 98.64% accuracy was obtained by organizing deep CNN (Convolution Neural Network) in handwritten Hangeul recognition. We designed a new network for handwritten Hangeul data based on GoogLenet without using the data augmentation or the multitasking techniques used in Hybrid learning.

A Study on Binarization of Handwritten Character Image (필기체 문자 영상의 이진화에 관한 연구)

  • 최영규;이상범
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.5
    • /
    • pp.575-584
    • /
    • 2002
  • On-line handwritten character recognition be achieved successful results since effectively neural networks divided the letter which is the time ordering of strokes and stroke position. But off-line handwritten character recognition is in difficulty of incomplete preprocessing because has not information of motion or time and has frequently overlap of the letter and many noise occurrence. consequently off-line handwritten character recognition needs study of various methods. This paper apply watershed algorithm to preprocessing for off-line handwritten hangul character recognition. This paper presents effective method in four steps in watershed algorithm as consider execution time of watershed algorithm and quality of result image. As apply watershed algorithm with effective structure to preprocessing, can get to the good result of image enhancement and binarization. In this experiment, this paper is estimate the previous method with this paper method for execution time and quality in image. Average execution time on the previous method is 2.16 second and Average execution time on this paper method is 1.72 second. While this paper method is remove noise effectively with overlap stroke, the previous method does not seem to be remove noise effectively with overlap stroke.

  • PDF

Handwritten Hangul Graphemes Classification Using Three Artificial Neural Networks

  • Aaron Daniel Snowberger;Choong Ho Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.167-173
    • /
    • 2023
  • Hangul is unique compared to other Asian languages because of its simple letter forms that combine to create syllabic shapes. There are 24 basic letters that can be combined to form 27 additional complex letters. This produces 51 graphemes. Hangul optical character recognition has been a research topic for some time; however, handwritten Hangul recognition continues to be challenging owing to the various writing styles, slants, and cursive-like nature of the handwriting. In this study, a dataset containing thousands of samples of 51 Hangul graphemes was gathered from 110 freshmen university students to create a robust dataset with high variance for training an artificial neural network. The collected dataset included 2200 samples for each consonant grapheme and 1100 samples for each vowel grapheme. The dataset was normalized to the MNIST digits dataset, trained in three neural networks, and the obtained results were compared.

Recognition of Virtual Written Characters Based on Convolutional Neural Network

  • Leem, Seungmin;Kim, Sungyoung
    • Journal of Platform Technology
    • /
    • v.6 no.1
    • /
    • pp.3-8
    • /
    • 2018
  • This paper proposes a technique for recognizing online handwritten cursive data obtained by tracing a motion trajectory while a user is in the 3D space based on a convolution neural network (CNN) algorithm. There is a difficulty in recognizing the virtual character input by the user in the 3D space because it includes both the character stroke and the movement stroke. In this paper, we divide syllable into consonant and vowel units by using labeling technique in addition to the result of localizing letter stroke and movement stroke in the previous study. The coordinate information of the separated consonants and vowels are converted into image data, and Korean handwriting recognition was performed using a convolutional neural network. After learning the neural network using 1,680 syllables written by five hand writers, the accuracy is calculated by using the new hand writers who did not participate in the writing of training data. The accuracy of phoneme-based recognition is 98.9% based on convolutional neural network. The proposed method has the advantage of drastically reducing learning data compared to syllable-based learning.

A Verification Method for Handwritten text in Off-line Environment Using Dynamic Programming (동적 프로그래밍을 이용한 오프라인 환경의 문서에 대한 필적 분석 방법)

  • Kim, Se-Hoon;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1009-1015
    • /
    • 2009
  • Handwriting verification is a technique of distinguishing the same person's handwriting specimen from imitations with any two or more texts using one's handwriting individuality. This paper suggests an effective verification method for the handwritten signature or text on the off-line environment using pattern recognition technology. The core processes of the method which has been researched in this paper are extraction of letter area, extraction of features employing structural characteristics of handwritten text, feature analysis employing DTW(Dynamic Time Warping) algorithm and PCA(Principal Component Analysis). The experimental results show a superior performance of the suggested method.