• Title/Summary/Keyword: hand tracking

Search Result 350, Processing Time 0.024 seconds

Efficient Tracking of Speech Formant Using Closed Phase WRLS-VFF-VT Algorithm

  • Lee, Kyo-Sik;Park, Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2E
    • /
    • pp.8-13
    • /
    • 2000
  • In this paper, we present an adaptive formant tracking algorithm for speech using closed phase WRLS-VFF-VT method. The pitch synchronous closed phase methods is known to give more accurate estimates of the vocal tract parameters than the pitch asynchronous method. However the use of a pitch-synchronous closed phase analysis method has been limited due to difficulties associated with the task of accurately isolating the closed phase region in successive periods of speech. Therefore we have implemented the pitch synchronous closed phase WRLS-VFF-VT algorithm for speech analysis, especially for formant tracking. The proposed algorithm with the variable threshold(VT) can provide a superior performance in the boundary of phone and voiced/unvoiced sound. The proposed method is experimentally compared with the other method such as two channel CPC method by using synthetic waveform and real speech data. From the experimental results, we found that the block data processing techniques, such as the two-channel CPC, gave reasonable estimates of the formant/antiformant. However, the data windows used by these methods included the effects of the periodic excitation pulses, which affected the accuracy of the estimated formants. On the other hand the proposed WRLS-VFF-VT method, which eliminated the influence of the pulse excitation by using an input estimation as part of the algorithm, gave very accurate formant/bandwidth estimates and good spectral matching.

  • PDF

Development of Patrol Robot using DGPS and Curb Detection (DGPS와 연석추출을 이용한 순찰용 로봇의 개발)

  • Kim, Seung-Hun;Kim, Moon-June;Kang, Sung-Chul;Hong, Suk-Kyo;Roh, Chi-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.140-146
    • /
    • 2007
  • This paper demonstrates the development of a mobile robot for patrol. We fuse differential GPS, angle sensor and odometry data using the framework of extended Kalman filter to localize a mobile robot in outdoor environments. An important feature of road environment is the existence of curbs. So, we also propose an algorithm to find out the position of curbs from laser range finder data using Hough transform. The mobile robot builds the map of the curbs of roads and the map is used fur tracking and localization. The patrol robot system consists of a mobile robot and a control station. The mobile robot sends the image data from a camera to the control station. The remote control station receives and displays the image data. Also, the patrol robot system can be used in two modes, teleoperated or autonomous. In teleoperated mode, the teleoperator commands the mobile robot based on the image data. On the other hand, in autonomous mode, the mobile robot has to autonomously track the predefined waypoints. So, we have designed a path tracking controller to track the path. We have been able to confirm that the proposed algorithms show proper performances in outdoor environment through experiments in the road.

Image-based Visual Servoing Through Range and Feature Point Uncertainty Estimation of a Target for a Manipulator (목표물의 거리 및 특징점 불확실성 추정을 통한 매니퓰레이터의 영상기반 비주얼 서보잉)

  • Lee, Sanghyob;Jeong, Seongchan;Hong, Young-Dae;Chwa, Dongkyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.403-410
    • /
    • 2016
  • This paper proposes a robust image-based visual servoing scheme using a nonlinear observer for a monocular eye-in-hand manipulator. The proposed control method is divided into a range estimation phase and a target-tracking phase. In the range estimation phase, the range from the camera to the target is estimated under the non-moving target condition to solve the uncertainty of an interaction matrix. Then, in the target-tracking phase, the feature point uncertainty caused by the unknown motion of the target is estimated and feature point errors converge sufficiently near to zero through compensation for the feature point uncertainty.

A study on the estimation method for the bandwidth of the radar range tracker using the receiver parameters in electronic warfare (전자전에서 레이더 수집변수를 활용한 레이더 거리추적 대역폭 추정방법에 관한 연구)

  • Jo, Jeil;Kim, So-yeon;Lee, Jung-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.357-358
    • /
    • 2018
  • The track radar use the range track loop to track the target range. The bandwidth of the radar range tracker can be determined by tradeoff according to signal to noise ratio and the target range. On the other hand, electronic warfare is carried out to prevent the radar from tracking targets by electronic attack. The deception or noise jamming in electronic warfare can be performed to interfere with the range track loop of the radar. In order to efficiently perform electronic warfare, the bandwidth in radar tracking loop is estimated and can be used for electronic attack. To do this, we have studied the method of estimating the bandwidth of radar tracking loop using the variables that can be gathered in electronic warfare.

  • PDF

Development of The Moving Target Tracking Robot in Outdoor Environment (실외환경에서의 이동 목표 추종용 로봇의 개발)

  • 안철기;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.954-962
    • /
    • 2002
  • In a park or street, we can see many people jogging or walking with their dogs tracking their masters. In this study, an entertainment robot that imitates a dog's behavior is created. The robot's task is tracking a moving target that is recognized as the master. In order to design the robot, the ecological approach. in which the robot's goals and surroundings heavily influence its design, is used. A three-wheel type locomotion system is designed as the robot's physical structure which can follow a human jogging in outdoor space like a park. A sensor system which can detect the position of a master for the robot in the outdoor space, is developed. This sensor system consists of a signal transmitter which is at the hand of a master and some sensors which are mounted on the robot. The transmitter emits RF(radio frequency) and ultrasonic signals and the sensors detect the direction and distance from the robot to the transmitter by using the received signals. For the control architecture of the robot, a purely reactive behavior-based method is used in order to increase speed of response. The developed robot is evaluated through experiments conducted in indoor and outdoor environments.

Usability Test for Motion Tracking Gait Assistive Walker

  • Daon Hwang;Ki Hun Cho
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • Background: This study evaluates the usability of the Motion-Tracking Gait Assistive Walker (MTGAW) designed for elderly individuals and those with disabilities, identifying areas for improvement through interviews with physical and occupational therapists. Design: A survey study involves the usability test for MTGAW. Methods: Usability evaluations were conducted with 37 physical therapists and occupational therapists. The process included explanation, product usage, satisfaction surveys, and interviews. A satisfaction survey covering 19 items across safety, maneuverability, usability, and management areas was administered. Individual interviews identified areas for improvement. Results: Overall, high satisfaction was reported across the four areas, but interviews highlighted the need for improvements, such as addressing discomfort due to slow speed and enhancing safety measures to prevent rear-end falls. Adjusting the walker's height and width to suit the user's physique was also suggested. Conclusion: MTGAW enhances walking support and hand movement freedom but needs refinement in speed control, fall prevention, and customization based on the user physique. Future efforts should focus on developing an improved MTGAW, considering recommendations from physical therapy experts, and conducting studies to analyze its clinical effectiveness for commercialization.

Ipsilateral Motor Deficit during Three Different Specific Task Following Unilateral Brain Damage (편측 뇌손상 환자에서 특정 과제에 한정된 동측 상지의 운동 결함 분석)

  • Kwon, Yong-Hyun;Kim, Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.2
    • /
    • pp.67-87
    • /
    • 2005
  • Impaired sensorimotor function of the hand ipsilateral to a unilateral brain damage has been reported in a variety of motor task. however, it is still the controversial issue because of the difficulty of detection in clinical situation, patients' variability(time after onset, contralateral upper extremity severity, other cognitive functions including apraxia), and the performed various motor task. The purpose of this study is to determine the presence of ipsilateral motor deficit following unilateral brain damage in three different specific tasks(hand tapping, visual tracking and coin rotation) compared with healthy age-sex matched control group using the same hand and to investigate the lateralized motor control in each hemispheric function. Findings revealed that stroke patients with unilateral brain damage experienced difficulties with rapid-simple repetitive movement, visuomotor coordination, complex sequencing movement on ipsilateral side. Also, Comparison of the left-hemispheric stroke groups and the right-hemispheric stroke groups revealed that patients with a left-hemisphere damage tended to be more variable in performing all of the three tasks. These results show that stroke patient with left hemisphere damage has more ipsilateral motor deficit, and the left hemisphere contributes to the processing of motor control that necessary for the executing actions with ipsilateral hand.

  • PDF

Integration of Condensation and Mean-shift algorithms for real-time object tracking (실시간 객체 추적을 위한 Condensation 알고리즘과 Mean-shift 알고리즘의 결합)

  • Cho Sang-Hyun;Kang Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.273-282
    • /
    • 2005
  • Real-time Object tracking is an important field in developing vision applications such as surveillance systems and vision based navigation. mean-shift algerian and Condensation algorithm are widely used in robust object tracking systems. Since the mean-shift algorithm is easy to implement and is effective in object tracking computation, it is widely used, especially in real-time tracking systems. One of the drawbacks is that it always converges to a local maximum which may not be a global maximum. Therefore, in a cluttered environment, the Mean-shift algorithm does not perform well. On the other hand, since it uses multiple hypotheses, the Condensation algorithm is useful in tracking in a cluttered background. Since it requires a complex object model and many hypotheses, it contains a high computational complexity. Therefore, it is not easy to apply a Condensation algorithm in real-time systems. In this paper, by combining the merits of the Condensation algorithm and the mean-shift algorithm we propose a new model which is suitable for real-time tracking. Although it uses only a few hypotheses, the proposed method use a high-likelihood hypotheses using mean-shift algorithm. As a result, we can obtain a better result than either the result produced by the Condensation algorithm or the result produced by the mean-shift algorithm.

ALIS : GPR System for Humanitarian Demining and Its Deployment in Cambodia

  • Sato, Motoyuki;Yokota, Yuya;Takahashi, Kazunori
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • Humanitarian demining is very important issue not only in mine affected courtiers but also for the courtiers which are technically, politically and financially supporting the mine affected courtiers. In order to achieve higher efficiency of the mine clearance operation, new technologies can significantly contribute to the societies. Since 2002, Tohoku University, Japan has developed a sensor system "ALIS" for humanitarian demining. ALIS is a hand-held dual sensor, which combines an electromagnetic induction sensor (EMI) and a Ground Penetrating Radar (GPR). ALIS has a real-time sensor tracking system based on a CCD camera and which enables the image reconstruction. We have tested ALIS in Cambodia and found that it can eliminate more than 70 % metal fragments. Since 2009, 2 sets of ALIS have detected more than 80 anti-personnel mines, and cleared more than 137,000 $m^2$ in Cambodia.

A Robust Visual Feedback Control with Integral Compensation for Robot Manipulators (적분 보상을 포함하는 로봇 매니퓰레이터의 시각 궤환 강인 제어)

  • Lee Kang-Woong;Jie Min-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.294-299
    • /
    • 2006
  • This paper studies a visual feedback control scheme for robot manipulators with camera-in-hand configurations. We design a robust controller that compensates for bounded parametric uncertainties of robot mechanical dynamics. In order to reduce steady state tracking error of the robot arms due to uncertain dynamics, integral action is included in the control input. Using the Lyapunov stability criterion, the uniform ultimate boundedness of the tracking error is proved. Simulation and experimental results with a 2-1ink robot manipulator illustrate the robustness and effectiveness of the proposed control algorithm.