• 제목/요약/키워드: hand strength

검색결과 1,509건 처리시간 0.032초

Effects of Electrical Muscle Stimulation for Preventing Deltoid Muscle Atrophy after Rotator Cuff Repair: Preliminary Results of a Prospective, Randomized, Single-blind Trial

  • Lee, Goo Joo;Cho, Hangyeol;Ahn, Byung-Hyun;Jeong, Ho-Seung
    • Clinics in Shoulder and Elbow
    • /
    • 제22권4호
    • /
    • pp.195-202
    • /
    • 2019
  • Background: This study investigates the effects of neuromuscular electrical stimulation (NMES) in preventing deltoid atrophy during the first 12 weeks after arthroscopic rotator cuff repair. Methods: Eighteen patients undergoing arthroscopic repair of a medium-sized rotator cuff tear by a single surgeon, were randomized into two groups: NMES and transcutaneous electrical nerve stimulation (TENS). Each group used the respective device for 6 weeks after surgery. Pain was measured at baseline, 6, and 12 weeks postoperatively, using the visual analogue scale (VAS); range of motion (ROM), abduction strength and functional scores were measured at baseline and 12 weeks postoperatively. Deltoid thickness and cross-sectional areas were measured using magnetic resonance imaging at 12 weeks postoperatively. Results: At 12 weeks post-surgery, no statistically significant difference was observed between the NMES and TENS groups in the pain VAS, the Disabilities of the Arm, Shoulder and Hand score, ROM, and abduction strength. Postoperative decrease in the thickness of the anterior, middle, and posterior deltoid, at the level just below the coracoid, was -2.5%, -0.7%, and -6.8%, respectively, in the NMES group, and -14.0%, -2.6%, and -8.2%, respectively, in the TENS group (p=0.016, p=0.677, and p=0.791, respectively). At the level of the inferior glenoid tubercle, postoperative decrease in area of the deltoid was -5.4% in the NMES group and -14.0% in the TENS group, which was significantly different (p=0.045). Conclusions: NMES has the potential for reducing deltoid atrophy after arthroscopic rotator cuff repair, suggesting that NMES might help minimize postoperative atrophy after various shoulder surgeries.

Analysis of CO2 Emission and Economic of Rural Roads Concrete Pavement Using Air Cooled Slag Aggregate (괴재슬래그 골재를 적용한 농촌도로 포장 콘크리트의 CO2 배출량 및 경제성 분석)

  • Ahn, Byong Hwan;Kim, Hwang-Hee;Lee, Jae-Young;Cha, Sang-Sun;Lee, Goen Hee;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제64권6호
    • /
    • pp.25-34
    • /
    • 2022
  • Recently, as a study to air cooled slag, which is an industrial by-product, research is being proceed to use it as a material for concrete. In this study, the workability, air content, compressive strength, CO2 emission and economic feasibility of concrete were analyzed when air cooled slag, an industrial by-product, was applied as aggregate for rural road pavement concrete. As a result of the analysis, both the slump and air contents test results of concrete using the air cooled slag aggregate satisfied the target values, and the compressive strength was increased when the air cooled slag aggregate was used compared to when the natural aggregate was applied. On the other hand, the largest amount of CO2 emission by raw material was found in aggregate. The carbon emission of rural road pavement concrete using air cooled slag aggregate increased when the Korean LCI DB was applied compared to when natural and crushed aggregates were applied, and the emission decreased when the German LCI DB was applied. This results are due to differences in the viewpoints of industrial by-products. However, considering the recycling of waste from the environmental aspect, it is necessary to simultaneously review the CO2 emission and recycling aspects in the future. Also, the application of air cooled slag aggregate had the effect of improving the economic efficiency of rural road pavement concrete about 18.75%.

Comparison of Maximum Fingertip Force Distribution in Cylindrical Grasping Between Healthy Adults and Patients With Spinal Cord Injury (원통형 물체 쥐기 시 건강한 성인과 척수마비 환자의 최대 손가락 끝 힘 분포 비교)

  • Hwang, Jisun;Ree, Jae Sun;Hwang, Seonhong
    • Physical Therapy Korea
    • /
    • 제29권1호
    • /
    • pp.28-36
    • /
    • 2022
  • Background: It is known that hand strength and fingertip force are used as an indicator of muscle strength and are also highly related to the various chronic symptoms and even lifespan. To use the individual fingertip force (IFF) as a quantitative index for clinical evaluation, the IFF should be measured and analyzed with various variables from various subjects, such as the normal range of fingertip force and the difference in its distribution by disease. Objects: We tried to measure and analyze the mean maximum IFF distribution during grasping a cylindrical object in healthy adults and patients with spinal cord injury (SCI). Methods: Five Force-sensitive resistor (FSR) sensors were attached to the fingertips of 24 healthy people and 13 patients with SCI. They were asked to grip the object three times for five seconds with their maximum effort. Results: The mean maximum IFF of the healthy adult group's thumb, index, and middle finger was similar statistically and showed relatively larger than IFF of the ring and small finger. It is a 3-point pinch grip pattern. All fingertip forces of patients with SCI decreased by more than 50% to the healthy group, and their IFF of the middle finger was relatively the largest among the five fingertip forces. The cervical level injured SCI patients showed significantly decreased IFFs compared to thoracic level injured SCI patients. Conclusion: We expect that this study results would be helpful for rehabilitation diagnosis and therapy goal decision with robust further study.

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

Evaluation of Muscle Load and Fatigue According to the Shape of Severe Dementia Patients' Clothing (중증 치매환자복 형태에 따른 근육 부하 및 피로도 평가)

  • Kwang Ae Park;Chung Eun Yang;Hayoung Jung
    • Fashion & Textile Research Journal
    • /
    • 제25권2호
    • /
    • pp.185-198
    • /
    • 2023
  • The purpose of this study is to obtain information necessary for the development of patient clothes that can reduce physical fatigue of caregivers by quantitatively measuring the muscle load and fatigue. The patient clothes used in this study can be broken down into three types: A type (back center zipper open suit), B type (top-to bottom separated patient clothes), and C type (front zipper open suit). The EMG measurement sites are as follows: hand muscle (brachioradialis), upper arm (biceps, triceps), shoulder (anterior deltoid, medial deltoid, posterior deltoid, upper trapezius), and waist (erector spinae); additionally, the EMG signals were measured. Through this experiment, muscle load, muscle energy consumption, and muscle fatigue generation tendency were analyzed. The results of the study revealed that the C type patient clothes required the most strength in the muscles of the shoulders, upper arms, hands, and back when being put on and taken off compared to other patient clothes. The A type clothes required a relatively large force in opening the zipper. In terms of muscle energy consumption, B type generally called for more strength when it came to the zip-up and putarmsup motions. With regard to the cover the body and put legs/hips up motions, C type used the highest amount of muscle energy, whereas A type used relatively little energy. In terms of the occurrence of muscle fatigue during the putting on and taking off of the patient's clothing, there was a difference in the area and degree of muscle fatigue in the A, B, and C types, and there was also a tendency for muscle fatigue to occur when performing repetitive movements.

Effect of internal stability on the failure properties of gravel-sand mixtures

  • Zhongsen Li;Hanene Souli;Jean-Marie Fleureau;Jean-Jacques Fry;Tariq Ouahbi;Said Taibi
    • Computers and Concrete
    • /
    • 제31권5호
    • /
    • pp.395-403
    • /
    • 2023
  • The paper investigates the effect of two parameters - sand content (SC) and grain migration during shearing - on the mechanical properties of gravel-sand mixtures. Consolidated undrained (CU) triaxial tests were carried out on eight series of mixtures containing gravel (1<d<16 mm) and sand (0.1<d<1 mm). The prepared mixtures have sand contents of 0, 10, 15, 20, 40, 54, 94 and 100%, and a relative density of 60%. The transition sand content (TSC) is experimentally defined and marks the transition from gravel-driven to sand-driven behavior. For SC<TSC, the dry density of the mixture increases with SC. This induces an increase in undrained peak strength and dilative trend. The slope and position of the critical state line (CSL) are also deeply dependent on SC. At SC=TSC, the mixtures exhibit the largest dry density and yield the highest undrained peak strength and the largest dilative trend. During shearing, large internal migration of grains was observed at the TSC, causing heterogeneity in the sample. Analysis of the CSL deduced from the final points of the triaxial tests shows that, at the TSC, failure appears to correspond to the behavior of the coarsest fraction of the soil. This fraction is located in the upper part of the sample, where the sand particles had been eliminated by suffusion. On the other hand, in the more stable materials, the CSL is consistent with the bulk grain size distribution of the soil.

Dynamic Behavior of External Post-tensioned Non-ballast Steel Plate Girder Railway Bridge (외부 후 긴장된 무도상 철도 판형교 동적 거동)

  • Park, Yong Gul;Park, Young Hoon;Choi, Dong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제28권3A호
    • /
    • pp.315-322
    • /
    • 2008
  • The present study applied the external post tensioning reinforcement method for reinforcing a non-ballast steel plate girder railway bridge, and the effects of the strength of tendons and the level of post-tensioning force on the dynamic behavior are experimented and analyzed. According to the results of this study, the natural frequency was increased by the strength of tendons but it was decreased by the rise of post-tensioning force and as a consequence the introduction of post-tensioning force decreased natural frequency slightly. It was analyzed that further study is need to establish the exact relations between post-tensioning force and natural frequency. In addition, it was found that the dynamic displacement, dynamic bending stress and vertical acceleration were decreased by the external post-tensioning. On the other hand, external post-tensioning increased horizontal acceleration by up to 20%, which was around 70% of vertical acceleration. This needs further study.

A Study on the Fire Resistance Performance of Mortars Using Mesoporous Silica Nanoparticles(MSNs) and PVA Fibers (다공성 나노실리카 입자(MSNs)와 PVA섬유를 혼입한 모르타르의 내화성능에 관한 연구)

  • Cheonpyo Park;Jakyung Lee;Taehyung Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • 제22권4호
    • /
    • pp.51-61
    • /
    • 2023
  • In this study, in order to improve the fire resistance performance of structures in case of fire in buildings and structures, PVA fibers and the ZnO particles combined with mesoporous nano silica (MSNs) were mixed with cement mortar, and the specimen was exposed to a temperature range of 20~1100℃. Then the residual compressive strength and weight change rate were measured to determine whether the fire resistance performance changed. As a result of the study, it was found that mixing mesoporous nano silica and PVA fiber together did not contribute to improving the fire resistance performance of cement mortar. On the other hand, mixing 0.5% of mesoporous nano silica and 0.1 vol% of PVA fiber showed the best improvement test results, showing that it was advantageous for fire resistance performance.

Properties Evaluation of Polyketone for Use as Earthquake-Resistant Structural Compression Material (내진 구조용 압축재로 활용을 위한 폴리케톤의 특성 평가)

  • Lee, Heon-Woo;Noh, Jin-Won;Kim, Young-Chan;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제44권2호
    • /
    • pp.133-139
    • /
    • 2024
  • The purpose of this study is to propose a new material called polyketone to overcome the limitations of polyurethane, which is currently used as a compression member in the field of earthquake-resistant structures. Although existing polyurethane has excellent elastic properties, it tends to be insufficient to recover the displacement that occurs in the structure. On the other hand, polyketone has excellent strength performance and is attracting attention as an eco-friendly material. In order to evaluate the compression properties of polyketone, which has these advantages, we would like to conduct a comparative experiment with polyurethane that was previously used. The speed dependence of polyketone was identified through simple compression experiments and experimental speed changes under repeated loading conditions, and additional compression behavior was applied to confirm compression behavior characteristics. Polyketone showed compressive strength about 10 times higher than that of polyurethane, and its excellent recovery characteristics were demonstrated by its deformation recovery ability about 14 times higher at relatively small displacements.

A Feasibility Study on the Use of Liner and Cover Materials Using Sewage Sludge (하수슬러지의 차수재 및 복토재로의 이용타당성에 관한 연구)

  • 유남재;김영길;박병수;정하익
    • Journal of the Korean Geotechnical Society
    • /
    • 제15권2호
    • /
    • pp.43-71
    • /
    • 1999
  • This research is an experimental work of developing a construction material using municipal wastewater sludge as liner and cover materials for waste disposal landfill. Weathered granite soil and flyash, produced as a by-product in the power plant, were used as the primary additives to improve geotechnical engineering properties of sludge. For secondary additives, bentonite and cement were mixed with sludge to decrease the permeability and to increase the shear strength, respectively. Various laboratory test required to evaluate the design criteria for liner and cover materials, were carried out by changing the mixing ratio of sludge with the additives. Basic soil properties such as specific gravity, grain size distribution, liquid and plastic limits were measured to analyze their effects on permeability, compaction, compressibility and shear strength properties of mixtures. Laboratory compaction tests were conducted to find the maximum dry densities and the optimum moisture contents of mixtures, and their effectiveness of compaction in field was consequently evaluated. Permeability tests of variable heads with compacted samples, and the stress-controlled consolidation tests with measuring permeabilities of samples during consolidation process were performed to obtain permeability, and to find the compressibility as well as consolidational coefficients of mixtures, respectively. To evaluate the long term stability of sludges, creep tests were also conducted in parallel with permeability tests of variable heads. On the other hand, for the compacted sludge decomposed for a month, permeability tests were carried out to investigate the effect of decomposition of organic matters in sludges on its permeability. Direct shear tests were performed to evaluate the shear strength parameters of mixed sludge with weathered granite, flyash and bentonite. For the mixture of sludge with cement, unconfined compression tests were carried out to find their strength with varying mixing ratio and curing time. On the other hand, CBR tests for compacted specimen were also conducted to evaluate the trafficability of mixtures. Various test results with mixtures were assessed to evaluate whether their properties meet the requirements as liner and cover materials in waste disposal landfill.

  • PDF