• 제목/요약/키워드: hamilton's principle

검색결과 760건 처리시간 0.083초

축방향으로 이동하는 현의 경계제어 (Boundary Control of Container Cranes as an Axially Moving String System)

  • 박한;홍금식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.387-392
    • /
    • 2004
  • The control objectives in this paper are to move the gantry of a container crane to its target position and to suppress the transverse vibration of the payload. The crane system is modeled as an axially moving string equation, in which control inputs are applied at both ends, through the gantry and the payload. The dynamics of the moving string are derived using Hamilton's principle for systems with changing mass. The Lyapunov function method is used in deriving a boundary control law, in which the Lyapunov function candidate is introduced from the total mechanical energy of the system. The performance of the proposed control law is compared with other two control algorithms available in the literature. Experimental results are given.

  • PDF

Numerical analysis for free vibration of functionally graded beams using an original HSDBT

  • Sahouane, Abdelkader;Hadji, Lazreg;Bourada, Mohamed
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.31-37
    • /
    • 2019
  • This work presents a free vibration analysis of functionally graded beams by employing an original high order shear deformation theory (HSDBT). This theory use only three unknowns, but it satisfies the stress free boundary conditions on the top and bottom surfaces of the beam without requiring any shear correction factors. The mechanical properties of the beam are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. In order to investigate the free vibration response, the equations of motion for the dynamic analysis are determined via the Hamilton's principle. The Navier solution technique is adopted to derive analytical solutions for simply supported beams. The accuracy and effectiveness of proposed model are verified by comparison with previous research.

Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory

  • Safa, Abdelkader;Hadji, Lazreg;Bourada, Mohamed;Zouatnia, Nafissa
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.329-336
    • /
    • 2019
  • An efficient shear deformation beam theory is developed for thermo-elastic vibration of FGM beams. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the on the surfaces of the beam without using shear correction factors. The material properties of the FGM beam are assumed to be temperature dependent, and change gradually in the thickness direction. Three cases of temperature distribution in the form of uniformity, linearity, and nonlinearity are considered through the beam thickness. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded beams are obtained using Navier solution. Numerical results are presented to investigate the effects of temperature distributions, material parameters, thermal moments and slenderness ratios on the natural frequencies. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Artificial intelligence as an aid to predict the motion problem in sport

  • Yongyong Wang;Qixia Jia;Tingting Deng;H. Elhosiny Ali
    • Earthquakes and Structures
    • /
    • 제24권2호
    • /
    • pp.111-126
    • /
    • 2023
  • Highly reliable and versatile methods artificial intelligence (AI) have found multiple application in the different fields of science, engineering and health care system. In the present study, we aim to utilize AI method to investigated vibrations in the human leg bone. In this regard, the bone geometry is simplified as a thick cylindrical shell structure. The deep neural network (DNN) is selected for prediction of natural frequency and critical buckling load of the bone cylindrical model. Training of the network is conducted with results of the numerical solution of the governing equations of the bone structure. A suitable optimization algorithm is selected for minimizing the loss function of the DNN. Generalized differential quadrature method (GDQM), and Hamilton's principle are used for solving and obtaining the governing equations of the system. As well as this, in the results section, with the aid of AI some predictions for improving the behaviors of the various sport systems will be given in detail.

EQUATIONS OF MOTION FOR CRACKED BEAMS AND SHALLOW ARCHES

  • Gutman, Semion;Ha, Junhong;Shon, Sudeok
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권2호
    • /
    • pp.405-432
    • /
    • 2022
  • Cracks in beams and shallow arches are modeled by massless rotational springs. First, we introduce a specially designed linear operator that "absorbs" the boundary conditions at the cracks. Then the equations of motion are derived from the first principles using the Extended Hamilton's Principle, accounting for non-conservative forces. The variational formulation of the equations is stated in terms of the subdifferentials of the bending and axial potential energies. The equations are given in their abstract (weak), as well as in classical forms.

Critical multi-field load analysis of the piezoelectric/piezomagnetic microplates as an application in sports equipment

  • Yi Zhu
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.485-493
    • /
    • 2023
  • Critical multi-field loads and free vibration responses of the sandwich piezoelectric/piezomagnetic microplate subjected to combination of magnetoelectromechanical loads based on a thickness-stretched higher order shear deformable model using Hamilton's principle. The lateral displacement is assumed summation of bending, shearing and stretching functions. The elasti core is sandwiched by a couple of piezoelectric/piezomagnetic face-sheets subjected to electromagnetocmechanical loads. The work of external force is calculated with considering the in-plane mechanical, electrical and magnetic loads based on piezomagnetoelasticity relations. The critical multi field loading and natural frequency analysis are performed to investigate influence of geometric and loading parameters on the responses. A verification is performed for justification of the numerical results.

Wave propagation analysis of the ball in the handball's game

  • Yongyong Wang;Qixia Jia;Tingting Deng;Mostafa Habibi;Sanaa Al-Kikani;H. Elhosiny Ali
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.729-742
    • /
    • 2023
  • It is a recent attraction to the mechanical scientists to investigate state of wave propagation, buckling and vibration in the sport balls to observe the importance of different parameters on the performance of the players and the quality of game. Therefore, in the present study, we aim to investigate the wave propagation in handball game ball in term of mass of the ball and geometrical parameters wit incorporation of the viscoelastic effects of the ball material into account. In this regard, the ball is modeled using thick shell structure and classical elasticity models is utilized to obtain the equation of motion via Hamilton's principle. The displacement field of the ball model is obtained using first order shear deformation theory. The resultant equations are solved with the aid of generalized differential quadrature method. The results show that mass of the ball and viscoelastic coefficient have considerable influence on the state of wave propagation in the ball shell structure.

내부 유체 유동을 포함한 해저 파이프 라인의 인장 굽힘 비틀림 운동 방정식 (The Equations of Motion for the Stretcthing, Bending and Twisting of a Marine Pipeline Containing Flowing Fluids)

  • 서영태
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.151-156
    • /
    • 1994
  • The equations of motion of a submarine pipeline with the internal flowing fluid and subject to hydrodynamic loadings are derived by using Hamilton's principle. Coupling between the bending and the longitudinal extension due to axial load and thermal expansion are considered. Coupling between the twisting and extension are not considered. The equations of motion are well agreed with the results which are derived by the vector method.

  • PDF

유연한 로봇 조작기 진동의 다입출력 최적제어 (Multi-Input Multi-Output Optimal Control of the Vibration of a Flexible Robot Manipulator)

  • 김승호;박영필
    • 대한기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.1587-1600
    • /
    • 1991
  • 본 연구에서는 로봇조작기를 강체부와 유연한 외팔보로 이루어진 모델로 설정 한 후 확장된 Hamilton의 원리를 적용하여 제어계의 운동방정식을 유도하였다. 계를 유한개의 제어 모드와 잔류 모드로 구분하고, 제어 모드에 대해 최적제어를 수행하기 위해 관측기를 설계하였으며, 진동에 관련된 측정 불가능한 상태변수를 추정하였다. 분석과 검토는 서보모터가 모든 제어를 담당하는 방식과 서보모터의 제어 방식에 작동 기를 추가시켜 병행 제어하는 다입출력 방식으로 구별하여 수행하였다.

Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory

  • Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.;Tounsi, Abdeldjebbar;Algarni, Ali;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제25권2호
    • /
    • pp.155-166
    • /
    • 2020
  • In this work, the buckling and vibrational behavior of the composite beam armed with single-walled carbon nanotubes (SW-CNT) resting on Winkler-Pasternak elastic foundation are investigated. The CNT-RC beam is modeled by a novel integral first order shear deformation theory. The current theory contains three variables and uses the shear correction factors. The equivalent properties of the CNT-RC beam are computed using the mixture rule. The equations of motion are derived and resolved by Applying the Hamilton's principle and Navier solution on the current model. The accuracy of the current model is verified by comparison studies with others models found in the literature. Also, several parametric studies and their discussions are presented.