• Title/Summary/Keyword: halogen light curing

Search Result 59, Processing Time 0.038 seconds

Wear Of Resin Composites Polymerized By Conventional Halogen Light Curing And Light Emitting Diodes Curing Units (HALOGEN LIGHT CURING UNIT 과 LIGHT EMITTING DIODES CURING UNIT 을 이용하여 중합되어진 복합레진의 마모 특성 비교)

  • 이권용;김환;박성호;정일영;전승범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1057-1060
    • /
    • 2004
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion with sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed the least wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as a curing unit for composite resin restorations.

  • PDF

Wear of Resin Composites Polymerized by Conventional Halogen Light Curing and Light Emitting Diodes Curing Units (Halogen Light Curing Unit과 Light Emitting Diodes Curing Unit을 이용하여 중합되어진 복합레진의 마멸 특성 비교)

  • Lee Kwon-Yong;Kim Hwan;Park Sung-Ho;Jung Il-Young;Jeon Seung-Beom
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.268-271
    • /
    • 2005
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15N contact force in a reciprocal sliding motion of sliding distance of 10mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.

POLYMERIZATION ABILITY OF SEVERAL LIGHT CURING SOURCES ON COMPOSITE RESIN (광원에 따른 중합광의 복합레진 중합 능력 비교)

  • Shin, Hye-Jin;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.156-161
    • /
    • 2003
  • The purpose of this study is to evaluate the polymerization ability of three different light sources by microhardness test. Stainless steel molds of 1, 2, 3, 4 and 5 mm in thickness of 7 mm in diameter were prepared. The hybrid composite Z100 was packed into the hole of the mold and curing light was activated for designated time. Three different light sources, conventional halogen, light emitting diode, and plasma arc, were used for curing of composite. Two different curing times applied ; one is to follow the manufacturers recommendation and the other is to extend the curing time of LED and plasma arc for balancing the light energy with halogen. Immediately after curing, the Vickers hardness was measured at the bottom of specimen. The results were as follows. 1 The composite cured with LED showed equal to higher microhardnesss than halogen. 2. The composite was cured with plasma arc by manufacturers recommendation showed lowest micro-hardness at all thickness. However, when curing time was extended, microhardness was higher than the others. In conclusion, this study suggested that plasma arc needs properly extended curing time.

COMPARISON OF THE DECREE OF CONVERSION IN LIGHT-CURED COMPOSITE RESIN CURED BY HALOGEN AND PLASMA XENON ARC LAMP CURING UNIT (Halogen lamp 광조사기와 Plasma xenon arc lamp 광조사기에 의한 광중합 복합레진의 중합률 비교)

  • Lee, Young-Jun;Jeong, Byung-Cho;Choi, Nam-Ki;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.328-336
    • /
    • 2002
  • Recently, new light curing unit utilizing the plasma xenon arc lamp is introduced. This curing unit is operated at relatively high intensity, so shortening the curing time significantly. The aim of this experiment was to estimate curing capability of plasma xenon arc lamp curing unit compared to traditional halogen lamp curing unit. Degree of conversion was evaluated by Raman spectroscopy after irradiation of specimens with halogen lamp curing unit(Optilux 150, Demetron, USA) for 20s, 40s, 60s and plasma xenon arc lamp curing unit(flipo, Lokki, France) for 2s, 3s, 6s. The results showed that strong light intensity of plasma xenon arc lamp curing unit did not compensate for short exposure time completely. So, Multi-layered curing within 2mm thickness and additional exposure time is recommanded when light-cured composite resin is polymerized with plasma xenon arc lamp curing unit.

  • PDF

Comparison of light transmittance in different thicknesses of zirconia under various light curing units

  • Cekic-Nagas, Isil;Egilmez, Ferhan;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.93-96
    • /
    • 2012
  • PURPOSE. The objective of this study was to compare the light transmittance of zirconia in different thicknesses using various light curing units. MATERIALS AND METHODS. A total of 21 disc-shaped zirconia specimens (5 mm in diameter) in different thicknesses (0.3, 0.5 and 0.8 mm) were prepared. The light transmittance of the specimens under three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) was compared by using a hand-held radiometer. Statistical significance was determined using two-way ANOVA (${\alpha}$=.05). RESULTS. ANOVA revealed that thickness of zirconia and light curing unit had significant effects on light transmittance ($P$ <.001). CONCLUSION. Greater thickness of zirconia results in lower light transmittance. Light-emitting diodes light-curing units might be considered as effective as Plasma arc light-curing units or more effective than Quartz-tungsten-halogen light-curing units for polymerization of the resin-based materials.

Wear Of Dental Restorative Composite Resins Cured by Two Different Light Sources (치아 충전용 복합레진의 광중합 광원 종류에 따른 마멸 비교)

  • Kim H.;Lee K.Y.;Park S. H.;Jung I. Y.;Jeon S. B.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.350-354
    • /
    • 2004
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion of sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji ?LC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.

  • PDF

INFLUENCE OF LIGHT SOURCE AND CURING TIME ON SURFACE HARDNESS OF RESIN COMPOSITES (중합 광원과 중합 시간이 복합레진의 표면 경도에 미치는 영향)

  • Bae, Sang-Man;Lee, Kwang-Hee;Kim, Dae-Eup;Ahn, Ho-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.199-206
    • /
    • 2001
  • The purpose of study was to compare the plasma arc light with the halogen light in compostie resin curing. Three composite resin materials(Z-100, 3M, USA; Tetric Ceram, Vivadent, Liechtenstein; SureFil, Dentsply, USA) were filled in the teflon molds (4mm in diameter and 2, 3, 4, 5mm in thickness) and cured with either the conventional low-intensity light curing unit with a halogen lamp (Optilux 360, Demetron, U.S.A.) for duration of 40 seconds or with the high-intensity light curing unit with a plasma arc lamp (Flipo, Lokki, France) for duration of 3, 6, and 9 seconds. The intensity of halogen light was about $370mW/cm^2$ and that of plasma light was about $1,900mW/cm^2$. After one week, the surface hardnesses of both the top and the bottom of the resin samples were measured with a microhardness tester(MXT70, Matsuzawa, Japan). There were significant differences in the hardness between the top and the bottom of the resin samples except the 2mm thickness samples cured by halogen light for 40s or by plasma light for 9s. There was no significant difference between the hardness values of the top surfaces of the thickness groups. The hardness values of the bottom surfaces decreased as the curing time decreased and as the thickness of resin samples increased, and the three kinds of resin composites showed similar patterns. The results suggest that the halogen light for 40 seconds might be able to cure greater depth of resin composites than the plasma light for 3, 6, or 9 seconds.

  • PDF

EFFECT OF SOFT-START LIGHT CURING ON THE POLYMERIZATION AND THE CONTRACTION STRESS OF COMPOSITE RESIN (완속기시(Soft-start) 광조사 방식이 복합레진의 중합 및 수축응력에 미치는 효과)

  • Wee, You-Min;Oh, You-Hyang;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.332-343
    • /
    • 2005
  • The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin mold was cured using the one-step continuous curing method with three difference light sources; conventional halogen light curing for 40 seconds at $400\;mw/cm^2$, plasma arc light curing for 6 seconds at $1300\;mW/cm^2$ and LED light curing for 10 seconds at $7The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin mold was cured using the one-step continuous curing method with three difference light sources; conventional halogen light curing for 40 seconds at . For the soft-start curing method ; 2 seconds light exposure at $650\;mW/cm^2$ followed by 3 seconds at $1300\;mW/cm^2$ and exponential increase with 5 seconds followed by 10 seconds at $700\;mW/cm^2$ were used. Contraction stress was measured using strain gauge method and Vickers hardness was measured 24 hours after polymerization at the top and bottom of specimens. Resin-acrylic interfaces were observed using a scanning electron microscope(SEM). The results of present study can be summarized as follows: 1. Contraction stresses at 10 min after polymerization were significantly reduced with the soft-start curing both in plasma and LED light sources(P<0.05). 2. Plasma light curing with soft-start resulted in not only the lowest contraction stress, but also the lowest hardness(P<0.05) 3. LED light curing with soft-start showed lower contraction stress than the one-step continuous halogen and LED light curing(P<0.05). 4. Microhardness of specimens cured by LED light with soft-start was equivalent to that of cured by the one-step continuous halogen and LED light(P>0.05). 5. Curing by LED light with soft-start and conventional halogen light resulted in better marginal sealing than plasma light and one-step LED light curing.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH BY PLASMA ARC CURING SYSTEM FOR BRACKET BONDING (Plasma arc curing system을 이용한 브라켓의 접착에 관한 연구)

  • Kim, Jung-Yoon;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.638-642
    • /
    • 2001
  • Recently, plasma arc curing system for curing resin composites has been introduced. This is characterized by a high output of light energy, which has the advantage of reducing the chair time and thereby making the treatment more comportable for the patients as well as for the dentist. The purpose of this study was to compare the shear bond strengths of light-cured orthodontic adhesive polymerized with conventional halogen light and plasma arc light. The 2 curing devices used were the XL3000 (3M, USA) conventional curing light and the Flipo (LOKKI, France) plasma arc light. The results from the present study can be summarized as fellows; 1. The mean shear bond strength for three groups were quite similar for 50 second conventional light group, 2 second plasma arc curing light group, 5 second plasma arc curing light group. 2. There was no statistically significant difference for three groups(p>0.05).

  • PDF

Effects of light direction and exposure times of plasma arc light on shear bond strength of metal brackets (Plasma arc light를 이용한 금속 브라켓의 부착시 광조사 방향과 중합시간이 전단결합강도에 미치는 영향)

  • Roh, Sang-Jeong;Lee, Hyun-Jung;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.34 no.5 s.106
    • /
    • pp.429-438
    • /
    • 2004
  • The purpose of this study was to compare the effects of different light direction exposure times and setting times when using plasma arc light on shear bond strength of metal brackets. 240 extracted human premolars were randomly assigned to one of 16 groups Standardized brackets were bonded to enamel using different light curing units (Plasma arc light and Halogen light), exposure times (Plasma arc light 2. 4, 6 seconds and Halogen light 20 seconds). and light directions [Vertical direction [V] and Oblique direction [O]). 8 groups were tested after 5 minutes and the remaining 8 groups after 24 hours. The metal brackets were bonded with Transbond XT. Shear bond strength was measured by a universal testing machine. The results were as fellows: There were as differences between the shear bond strengths of the Vertical groups (V) and Oblique groups (O). regardless of exposure times and types of light curing units (p>0.05). The shear bond strength of the group with 2 seconds of plasma light were significantly lower than other exposure time groups (P<0.05). The shear bond strength tested after 5 minutes was lower than after 24 hours (p<0.05) The Adhesive Remment Index (ARI) score showed no statistically significant difference among the different groups. The results of this study suggested that the light direction of plasma arc light had no influence on the shear bond strength of metal brackets to enamel. and exposure times more than 4 seconds produced shear bond strengths similar to those Produced with a conventional halogen curing light.