We have studied the formation of coronal holes (CHs) associated with halo CMEs. For this study, we used multi-wavelength data from Yohkoh Soft X-ray Telescope (SXT), GOES Soft X-ray Imager (SXI), SOHO EIT 195 ${\AA}$, SOHO MDI magnetogram, MLSO He I 10830 ${\AA}$, and BBSO H-alpha. The CHs are characterized by open magentic field regions with low emission, density, and temperature and their open fields drive high speed solar winds which cause geomagnetic storms. So far, the formation and the evolution of CHs are not well understood. The formation of the dark region associated with the eruption of a CME is well known as "coronal dimming" which may be caused by the mass depletion near the CME footpoint. It is different from a typical CH since it persists for only one or two days. In this study, we present three cases that show the formation of coronal holes which are associated with three halo CMEs: 1) 2000 Jul 14, 2) 2003 Oct 28, 3) 2005 May 13. In the first case, hot plasma was ejected during a weak eruption and then filled out the pre-existing CH. After the halo CME occurred, the hot plasma region becomes a CH again. In the second and the third cases, we found newly formed CHs just after their associated CMEs. All three coronal holes are associated with strong flares and persist over 3 days until they disappeared by the solar rotation. Examining the MDI magnetograms, we found that the magnetic polarity of each CH region has one polarity. Based on these results, we suggest that the coronal holes can be formed by the CMEs and they should be distinguished from the coronal dimming.
In this work we have examined the performance of the WSA/ENLIL cone model provided by Community Coordinated Modeling Center (CCMC). The WSA/ENLIL model simulates the propagation of coronal mass ejections (CMEs) from the Sun into the heliosphere. We estimate the shock arrival times at the Earth using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. We make a comparison between CME arrival times by the WSA/ENLIL cone model and IP shock observations. For the WSA/ENLIL cone model, the root mean square(RMS) error is about 13 hours and the mean absolute error(MAE) is approximately 10.4 hours. We compared these estimates with those of the empirical model by Kim et al.(2007). For the empirical model, the RMS and MAE errors are about 10.2 hours and 8.7 hours, respectively. We are investigating several possibilities on relatively large errors of the WSA/ENLIL cone model, which may be caused by cone model velocities, CME density enhancement factor, or CME-CME interaction.
Recently, we suggested a CME earthward direction parameter as an important geoeffective parameter that has been demonstrated by front-side halo CME data. In this study, we present the geometrical implication of this parameter by comparing with the parameters from a CME cone model. Major results from this study can be summarized as follows. First, we derive an analytic relationship between the cone model parameters(the half angular width of a cone and the angle between the cone axis and the plane of sky) and the earthward direction parameter. Second, we demonstrate a close relationship between the earthward direction parameter and the cone axis angle using 32 front-side full halo CMEs. Third, we found that there is noticeable inconsistency between the cone axis angles estimated from the cone model fitting to the CMEs and from their associated flare positions, implying that the flare position should not be considered as a good earthward direction parameter. Finally we present several advantages of our earthward direction parameter in terms of the forecast of a geomagnetic storm based on CME parameters.
We have compared the geoeffective parameters of halo coronal mass ejections (CMEs) to predict geomagnetic storms. For this we consider 50 front-side full halo CMEs whose asymmetric cone model parameters and earthward direction parameter were available. For each CME we use its projected velocity (Vp), radial velocity (Vr), angle between cone axis and sky plane (${\gamma}$) from the cone model, earthward direction parameter (D), source longitude (L), and magnetic field orientation (M) of the CME source region. We make a simple and multiple linear regression analysis to find out the relationship between CME parameters and Dst index. Major results are as follows. (1) $Vr{\times}{\gamma}$ has a higher correlation coefficient (cc = 0.70) with the Dst index than the others. When we make a multiple regression of Dst and two parameters ($Vr{\times}{\gamma}$, D), the correlation coefficient increases from 0.70 to 0.77. (2) Correlation coefficients between Dst index and $Vr{\times}{\gamma}$ have different values depending on M and L. (3) Super geomagnetic storms (Dst ${\leq}$ -200 nT) only appear in the western and southward events. Our results demonstrate that not only the cone model parameters together with the earthward direction parameter improve the relationship between CME parameters and Dst index but also the source longitude and its magnetic field orientation play a significant role in predicting geomagnetic storms.
We investigate the dependence of solar proton events (SPEs) on solar and interplanetary type II bursts associated with solar flares and/or CME-driven shocks. For this we consider NOAA solar proton events from 1997 to 2012 and their associated flare, CME, and type II radio burst data with the following subgroups: metric, decameter-hectometric (DH), and meter-to-kilometric (m-to-km) type II bursts. The primary findings of this study are as follows. First, about half (52%) of the m-to-km type II bursts are associated with SPEs and its occurrence rate is higher than those of DH type II bursts (45%) and metric type II bursts (19%). Second, the SPE occurrence rate strongly depends on flare strength and source longitude, especially for X-class flare associated ones; it is the highest in the central region for metric (46%), DH (54%), and m-to-km (75%) subgroups. Third, the SPE occurrence rate is also dependent on CME linear speed and angular width. The highest rates are found in the m-to-km subgroup associated with CME speed 1500 kms-1: partial halo CME (67%) and halo CME (55%). Fourth, in the relationships between SPE peak fluxes and solar eruption parameters (CME linear speed, flare flux, and longitude), SPE peak flux is mostly dependent on SPE peak flux for all three type II bursts (metric, DH, m-to-km). It is noted that the dependence of SPE peak flux on flare peak flux decreases from metric to m-to-km type II burst.
For space weather forecast, it is important to determine three-dimensional parameters of coronal mass ejections (CMEs). To estimate three-dimensional parameters of CMEs, we have developed a full ice-cream cone model which is a combination of a symmetrical flat cone and a hemisphere. By applying this model to 12 SOHO/LASCO halo CMEs, we find that three-dimensional parameters from our method are similar to those from other stereoscopic methods. For several geoeffective CME events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. We derive CME mean density as a function of CME height for these CMEs, which are approximately fitted to power-law functions. We find that the ICME mean densities extrapolated from the power law functions, are correlated with their corresponding ICME ones in logarithmic scales.
In this study we have examined the probability of solar proton events (SPEs) and their peak fluxes depending on flare (flux, longitude and impulsive time) and CME parameters (linear speed, longitude, and angular width). For this we used the NOAA SPE list and their associated flare data from 1976 to 2006 and CME data from 1997 to 2006. We find that about 3.5% (1.9% for M-class and 21.3% for X-class) of the flares are associated with SPEs. It is also found that this fraction strongly depends on longitude; for example, the fraction for $30W^{\circ}$ < L < $90W^{\circ}$ is about three times larger than that for $30^{\circ}E$ < L < $90^{\circ}E$. The SPE probability with long duration (${\geq}$ 0.3 hours) is about 2 (X-class flare) to 7 (M-class flare) times larger than that for flares with short duration (< 0.3 hours). In case of halo CMEs with V ${\geq}$ 1500km/s, 36.1% are associated with SPEs but in case of partial halo CME ($120^{\circ}$${\leq}$ AW < $360^{\circ}$) with 400 km/s ${\leq}$ V < 1000 km/s, only 0.9% are associated with SPEs. The relationships between X-ray flare peak flux and SPE peak flux are strongly dependent on longitude and impulsive time. The relationships between CME speed and SPE peak flux depend on longitude as well as direction parameter. From this study, we suggest a new SPE forecast method with three-steps: (1) SPE occurrence probability prediction according to the probability tables depending on flare and CME parameters, (2) SPE flux prediction from the relationship between SPE flux and flare (or CME) parameters, and (3) SPE peak time.
We present a comprehensive catalog of 307 front-side halo (partial and full) CMEs during 2009 and 2013 observed by both SOHO and STEREO. This catalog includes 2D CME properties from single spacecraft (SOHO) as well as 3D ones from multi-spacecraft. To determine the 3D CME properties (speed, angular width, and source location), we use the STEREO CME analysis tool based on a triangulation method. In this paper, we compare between 2D and 3D CME properties, which is the first statistical comparison between them. As a result, we find that 2D speeds tend to be about 20% underestimated when compared to 3D ones. The 3D angular width ranges from $15^{\circ}$ to $109^{\circ}$, which are much smaller than the 2D angular widths with the mean value of $225^{\circ}$. We also find that a ratio between 2D and 3D angular width decreases with central meridian distance. The 3D source locations from the triangulation method are similar to the flare locations. The angular width-speed relationship in 3D is much stronger than that in 2D.
Propagating speeds of coronal mass ejections (CMEs) have been calculated by several geometrical models based on multi-view observations (STEREO/SECCHI and SOHO/LASCO). But in 2015, we were unable to obtain radial velocity of a CME because the STEREO satellites were located near the backside of the sun. As an alternative to resolve this problem, we propose a method to combine a coronal shock front, which appears on the outermost of the CME, and an EUV-wave that occurs on the solar disk. According to recent studies, EUV-wave occurs as a footprint of the coronal shockwave on the lower solar atmosphere. In this study, the shock, observed as a bubble shape, is assumed as a perfect sphere. This assumption makes it possible to determine the height of a coronal shock, by matching the position of an EUV-wave on the solar disk and a coronal shock front in coronagraph. The radial velocity of Halo-CME is calculated from the rate of coronal shock position shift. For an event happened on 2011 February 15, the calculated speed in this method is a little slower than the real velocity but faster than the apparent one. And these results and the efficiency of this approach are discussed.
태양 주기 23 기간 동안 발생한 태양 고에너지 양성자 이벤트(Solar Proton Events, SPE)와 그와 연관된 코로나 물질 방출(Corona Mass Ejection, CME) 사이의 상관관계를 통계적으로 살펴보았다. 1997-2006년 동안 일어난 63개의 SPE-CME 데이터 쌍을 조사해 본 결과, CME의 속도는 SPE의 상승 시간(rise time) 및 지속 시간(duration time) 등과 상관 계수가 높게 나타났다. 특별히 CME의 지구방향 인자(earthward direction parameter)는 SPE의 최대 플럭스와 높은 상관 계수를 보여 주었다. 기존의 태양 플레어 세기가 SPE의 세기에 미치는 영향은 CME의 지구방향 인자가 SPE의 플럭스의 세기에 미치는 영향과 그 상관계수가 유사하게 나타났다. 특히 SPE와 CME 지구 방향 인자와의 상관관계가 좋은 데이터들의 공통적인 특성은 모두 매우 빠른(>1400km/s) halo CME인 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.