• Title/Summary/Keyword: halloysite nanotube

Search Result 11, Processing Time 0.025 seconds

Production of NH2-HNT Using Organic Solvent Reducing Dry Mechanical Device with Different Conditions and with Scale Up Settings (유기용매 사용 감소를 위한 건식 기계 장치를 이용한 NH2-HNT 제조의 조건 변화와 스케일업)

  • Moon il Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.357-361
    • /
    • 2024
  • Halloysite nanotube (HNT) has a nanotube structure with the chemical formula of Al2Si2O5(OH)4·nH2O and is a natural sediment of aluminosilicate. HNT has been used as additive to improve the mechanical properties of epoxy composites with exchange of amine group as a terminal functional group using huge amount of organic solvents. In order to save time and simplify complicated procedures, a dry coating machine was designed and used for amine group exchange in previous research. For better applications, it was conducted with different parameters and with scale up settings. Best condition was found to reduce usage of solvent, time and man power.

Mechanical Device Design for Solvent Usage Reduction for Amine Group Substitution and Production of NH2-HNT (아민기 치환 시 용매 사용량 절감을 위한 기계 장치 설계 및 NH2-HNT 제조)

  • Moon il Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.6
    • /
    • pp.477-482
    • /
    • 2023
  • Halloysite nanotube (HNT) has a nanotube structure with the chemical formula of Al2Si2O5(OH)4 · nH2O and is a natural sediment of aluminosilicate. A lot of research has been conducted to improve the mechanical properties of epoxy composites by generating interactions between HNTs and polymers through surface treatment of HNTs, such as exchange of amine group as a terminal functional group. However, most of the surface modification methods are performed under wet conditions, which require a relatively large amount of time, manpower and solvent. In order to save time and simplify complicated procedures, a dry coating machine was designed and used for amine group exchange. Comparing the XPS results, it was found that the results of NH2-HNT prepared using a dry coating machine and the substitution through the wet method were not significantly different, and it has been confirmed that the amount of solvent used and the time savings can be made.

Improvement of Mechanical Properties of Epoxy Composites Using NH2-HNT Manufactured by Dry Coating Device as Filler (건식코팅장치를 이용하여 제조한 NH2-HNT를 충진재로 응용한 에폭시 복합체의 기계적 물성 향상)

  • Moon il Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.371-375
    • /
    • 2024
  • Epoxy resins are widely used in various fields due to their high adhesion, mechanical strength, and solvent resistance. However, as the volume decreases during the hardening process and the cooling process after hardening, stress is generated and when an external force is applied, the brittle material exhibits destruction behavior. To complement this, research has been conducted using inorganic nanofillers such as halloysite nanotube(HNT). HNT has a nanotube structure with the chemical formula of Al2Si2O5(OH)4·nH2O and is a natural sediment of aluminosilicate. It has been used as additive to improve the mechanical properties of epoxy composites with exchange of amine group as a terminal functional group. In order to simplify complicated procedures of common wet method, a dry coating machine was designed and used for amine group exchange in previous research. In this study, they were applied as filler in epoxy composites, and mechanical properties such as tensile strength and flexural strength of composites were examined.

Synergistically Enhanced Oxygen Evolution Catalysis with Surface Modified Halloysite Nanotube

  • Hyeongwon Jeong;Bharat Sharma;Jae-ha Myung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.96-104
    • /
    • 2023
  • Synergistically increased oxygen evolution reaction (OER) of manganese oxide (MnO2) catalyst is introduced with surface-modified halloysite nanotube (Fe3O4-HNTs) structure. The flake shaped MnO2 catalyst is attached on the nanotube template (Fe3O4-HNTs) by series of wet chemical and hydrothermal method. The strong interaction between MnO2 and Fe3O4-HNTs maximized active surface area and inter-connectivity for festinate charge transfer reaction for OER. The synergistical effect between Fe3O4 layer and MnO2 catalyst enhance the Mn3+/Mn4+ ratio by partial replacement of Mn ions with Fe. The relatively increased Mn3+/Mn4+ ratio on MnO2@FHNTs induced 𝜎* orbital (eg) occupation close to single electron, improving the OER performances. The MnO2@FHNTs catalyst exhibited the reduced overpotential of 0.42 V (E vs. RHE) at 10 mA/cm2 and Tafel slope of (99 mV/dec), compared with that of MnO2 with unmodified HNTs (0.65 V, 219 mV/dec) and pristine MnO2 (0.53 V, 205 mV/dec). The present study provides simple and innovative method to fabricate nano fiberized OER catalyst for a broad application of energy conversion and storage systems.

Preparation and Gas Permeation Properties of PDMS-HNT Nanotube Composite Membrane (PDMS-HNT 나노튜브 복합막의 제조와 기체투과 성질)

  • Lee, Seul Ki;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.185-193
    • /
    • 2014
  • PDMS (polydimethylsiloxane)-HNT (halloysite nanotube) composite membranes were prepared with different amounts tendency of HNT 5, 10, 20 and 30 wt% and rubbery polymer PDMS. The characteristics of these membranes were studied by FT-IR, XRD, TGA, and SEM. Gas permeation experiment were performed under condition of $25^{\circ}C$ and $3kg/cm^2$. Gas permeability of $N_2$, $H_2$, $CH_4$, and $CO_2$ and selectivity were investigated by increasing the amount of HNT contents in the PDMS. In $H_2$, $N_2$, $CH_4$, and $CO_2$ gases, as increasing HNT contents from 0 to 30 wt%, decreasing value of the permeability were observed. The selectivity of ($CO_2/N_2$) was shown in the range of 14 to 44 and the range of selectivity of ($CO_2/CH_4$) was 3.0 to 7.0.

Gas Permeation of CO2 and N2 through PDMS-HNT and PDMS-mHNT Composite Membranes (PDMS-HNT과 PDMS-mHNT 복합막을 통한 CO2와 N2의 기체투과)

  • Lee, Seul Ki;Hong, Se Ryeong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.67-76
    • /
    • 2018
  • In this study, PDMS-HNT and PDMS-mHNT composite membranes were prepared by the addition of halloysite nanotube (HNT) and modified HNT (mHNT) to PDMS. To investigate the physico-chemical characteristics of composite membranes, analytical methods such as FT-IR, XRD, TGA, and SEM were utilized. The gas permeability and selectivity properties of $N_2$ and $CO_2$ were evaluated. In particular, the PDMS-HNT with 10 wt% HNT and PDMS-mHNT with 5 wt% mHNT showed the highest $CO_2/N_2$ selectivity and $CO_2$ permeability at $35^{\circ}C$, respectively. Overall, PDMS-HNT and PDMS-mHNT composite membranes improved the $CO_2/N_2$ selectivity compared to that of using PDMS membrane.

Analysis of Mechanical and Thermal Properties of Epoxy Complex using Zirconia Supported Halloysite Nanotubes as Filler (지르코니아를 담지한 할로이사이트 나노튜브를 충진재로 이용한 에폭시 복합체의 기계적 열적 특성 분석)

  • Kim, Moon-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.461-466
    • /
    • 2022
  • Epoxy resins are widely used in various industrial fields. However, they suffer from brittleness, an issue that must be addressed for further applications. To solve this problem, additional fillers are needed to improve the mechanical and thermal properties of the resins; zirconia is one such filler. However, it has been reported that aggregation may occur in the epoxy composites as the amount of zirconia increases, preventing enhancement of the mechanical strength of the epoxy composites. Herein, to reduce the aggregation, zirconia was well dispersed on halloysite nanotubes (HNTs), which have high thermal and mechanical strength, by a conventional wet impregnation method using zirconyl chloride octahydrate as a precursor. The mechanical and thermal strengths of the epoxy composites with The zirconia impregnated HNTs (Zr/HNT) were investigated. Zr/HNT were characterized by Scanning electron microscope (SEM), transmittance electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy. The thermal strength of the epoxy composites was studied by thermomechanical analysis (TMA) and the mechanical strength of the epoxy composites (flexural strength) was studied by using a universal testing machine (UTM). The mechanical and thermal strengths of the epoxy complex with Zr/HNT were improved compared to those of the epoxy complex with HNT, and also increased as the content of Zr/HNT increased.

Effect to Material Strength Recovery of Stepped Patch Repair with Epoxy based Particle Reinforced GFRP Composites under Hygrothermal Environment (에폭시 기지 입자 강화 GFRP를 사용한 계단형 패치 보수법이 고온 고습 환경하에서 재료의 물성 회복에 미치는 영향)

  • Jung, Kyung-Seok;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.88-93
    • /
    • 2018
  • In this study, damaged composite laminates were repaired by a stepped patch repair method using halloysite nanotube(HNT) and milled carbon(MC) reinforced composite materials with different amount of the particles. And the mechanical and structural effects of the particles on the interface between the damaged and repair surfaces were analyzed. At this time, after exposing them to a harsh environment of high temperature and humidity for a long time, the recovery rate of the material properties relative to the material forming the damaged plate was compared. As a result, at $70^{\circ}C$ high temperature distilled water, the hygroscopicity of the HNT/GFRP composites was significantly different from that of the MC/GFRP composites. Especially, 0.5, 1 wt. % HNT was added, the moisture absorption rate was the lowest and this was the factor that contributed to the mechanical strength increase. On the other hand, MC showed a high hygroscopic resistance only with a small amount, and the strength was different according to the action direction of the load, and the addition amount was also different.

Gas Permeation Characteristics through Chitosan-HNT Composite Membrane (Chitosan-HNT 복합막을 이용한 기체 투과특성에 관한 연구)

  • Lee, Seul Ki;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.358-366
    • /
    • 2014
  • Chitosan-HNT (halloysite nanotube) composite membranes were prepared by the addition of HNT 0, 3, 5, and 10 wt%. The structure of composite membranes were studied by FT-IR, XRD, TGA, and SEM. Gas permeation experiment were performed under condition of $30^{\circ}C$ and $4kgf/cm^2$. Gas permeability and selectivity were investigated by increasing the amount of HNT contents in the chitosan. Chitosan-HNT composite membrane for $CO_2$ and $CH_4$ showed the maximum value at 3 wt% of HNT content and decreased thereafter. The selectivity of ($CO_2/CH_4$) was increased due to its affinity with the OH groups on the HNT, was shown in the range of 1.3 to 3.8 at 0~10 wt%.

Comparison of Mechanical Properties on Helical/Hoop Hybrid Wound HNT Reinforced CFRP Pipe with Water Absorption Behavior (CFRP 파이프의 와인딩 적층 패턴 설계 및 HNT 나노입자 보강에 따른 수 환경에서의 기계적 물성 평가)

  • Choi, Ji-Su;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.174-179
    • /
    • 2021
  • Currently, fluid transfer steel pipes take a lot of time and expense to maintain all facilities due to new construction and painting or corrosion and aging. Therefore, this study was conducted for designing a CFRP pipe structure with high corrosion resistance and chemical resistance as a substitute for steel pipes. The helical/hoop pattern was cross-laminated to improve durability, and HNT was added to suppress the moisture absorption phenomenon of the epoxy. The HNT/CFRP pipe was manufactured by a filament winding process, and performed a mechanical property test, and a moisture absorption test in distilled water at 70℃. As a result, the highest bending strength was obtained when the hoop pattern was laminated with a thickness equivalent to 0.6% of the pipe. The 0.5 wt% HNT specimen had the highest moisture absorption resistance. Also, the delamination phenomenon at the interlayer interface was delayed, resulting in the lowest strength reduction rate.