• 제목/요약/키워드: half cell

Search Result 827, Processing Time 0.024 seconds

Physical Properties of Larch(Larix kaemferi Carr.) Treated by High Temperature Steaming - Effect of high temperature steaming on shrinkages of larch block - (고온수증기처리에 의한 낙엽송재의 물성(제2보) - 고온수증기처리에 의한 낙엽송재의 수축율 변화 -)

  • Kim, Jung-Hwan;Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.102-107
    • /
    • 2002
  • This study deals with a physical properties of Larch(Larix kaemferi Carr.) treated at temperatures above 100℃. Treatment conditions of this experiment were operated at regular intervals of 20℃ at temperature up to 180℃ for 10, 30, 60 and 90 minutes by using the bomb, respectively. The results of this study were as follows : 1) The density was decreased with increasing the times and temperatures of steaming. 2) It was considered that the steaming treated specimen's higher shrinkage compared to control was due to change of composition and structure in cell wall. 3) The warpage of half edge grain specimen was decreased by high temperature steaming.

Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis (음이온교환막 수전해 촉매기술 동향)

  • Kim, Jiyoung;Lee, Kiyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.69-80
    • /
    • 2022
  • The anion exchange membrane (AEM) water electrolysis for high purity hydrogen production is attracting attention as a next-generation green hydrogen production technology by using inexpensive non-noble metal-based catalysts instead of conventional precious metal catalysts used in proton exchange membrane (PEM) water electrolysis systems. However, since AEM water electrolysis technology is in the early stages of development, it is necessary to develop research on AEM, ionomers, electrode supports and catalysts, which are key elements of AEM water electrolysis. Among them, current research in the field of catalysts is being studied to apply a previously developed half-cell catalyst for alkali to the AEM system, and the applied catalyst has disadvantages of low activity and durability. Therefore, this review presented a catalyst synthesis technique that promoted oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) using a non-noble metal-based catalyst in an alkaline medium.

Electron Acceptors in Organic Solar Cells (유기태양전지의 전자 받개 물질들)

  • Kong, Jaemin;Nam, Sang-Yong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.119-125
    • /
    • 2022
  • The power conversion efficiency of organic solar cells has reached over 18%. The rapid increase in the efficiency is largely associated with the development of electron acceptors paired with proper electron donor polymers. In this mini review, the progress of organic solar cells is reviewed in terms of the development of electron acceptors. In the first part of the review, fullerene-based electron acceptors that have led the first half of organic solar cell development were dealt with. In the second part of it, nonfullerene-based electron acceptors, which have potentials to overcome the demerits of fullerene-based electron acceptors and opened a new era of organic solar cells, were introduced. Lastly, some suggestions to tackle the efficiency barrier of 20% are given with the summary of the review in the closing section.

Tramadol as a Voltage-Gated Sodium Channel Blocker of Peripheral Sodium Channels Nav1.7 and Nav1.5

  • Chan-Su, Bok;Ryeong-Eun, Kim;Yong-Yeon, Cho;Jin-Sung, Choi
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.168-175
    • /
    • 2023
  • Tramadol is an opioid analog used to treat chronic and acute pain. Intradermal injections of tramadol at hundreds of millimoles have been shown to produce a local anesthetic effect. We used the whole-cell patch-clamp technique in this study to investigate whether tramadol blocks the sodium current in HEK293 cells, which stably express the pain threshold sodium channel Nav1.7 or the cardiac sodium channel Nav1.5. The half-maximal inhibitory concentration of tramadol was 0.73 mM for Nav1.7 and 0.43 mM for Nav1.5 at a holding potential of -100 mV. The blocking effects of tramadol were completely reversible. Tramadol shifted the steady-state inactivation curves of Nav1.7 and Nav1.5 toward hyperpolarization. Tramadol also slowed the recovery rate from the inactivation of Nav1.7 and Nav1.5 and induced stronger use-dependent inhibition. Because the mean plasma concentration of tramadol upon oral administration is lower than its mean blocking concentration of sodium channels in this study, it is unlikely that tramadol in plasma will have an analgesic effect by blocking Nav1.7 or show cardiotoxicity by blocking Nav1.5. However, tramadol could act as a local anesthetic when used at a concentration of several hundred millimoles by intradermal injection and as an antiarrhythmic when injected intravenously at a similar dose, as does lidocaine.

Fabry disease: current treatment and future perspective

  • Han-Wook Yoo
    • Journal of Genetic Medicine
    • /
    • v.20 no.1
    • /
    • pp.6-14
    • /
    • 2023
  • Fabry disease (FD), a rare X-linked lysosomal storage disorder, is caused by mutations in the α-galactosidase A gene gene encoding α-galactosidase A (α-Gal A). The functional deficiency of α-Gal A results in progressive accumulation of neutral glycosphingolipids, causing multi-organ damages including cardiac, renal, cerebrovascular systems. The current treatment is comprised of enzyme replacement therapy (ERT), oral pharmacological chaperone therapy and adjunctive supportive therapy. ERT has been introduced 20 years ago, changing the outcome of FD patients with proven effectiveness. However, FD patients have many unmet needs. ERT needs a life-long intravenous therapy, inefficient bio-distribution, and generation of anti-drug antibodies. Migalastat, a pharmacological chaperone, augmenting α-Gal A enzyme activity only in patients with mutations amenable to the therapy, is now available for clinical practice. Furthermore, these therapies should be initiated before the organ damage becomes irreversible. Development of novel drugs aim at improving the clinical effectiveness and convenience of therapy. Clinical trial of next generation ERT is underway. Polyethylene glycolylated enzyme has a longer half-life and potentially reduced antigenicity, compared with standard preparations with longer dosing interval. Moss-derived enzyme has a higher affinity for mannose receptors, and seems to have more efficient access to podocytes of kidney which is relatively resistant to reach by conventional ERT. Substrate reduction therapy is currently under clinical trial. Gene therapy has now been started in several clinical trials using in vivo and ex vivo technologies. Early results are emerging. Other strategic approaches at preclinical research level are stem cell-based therapy with genome editing and systemic mRNA therapy.

An Electron Microscopy of Spermiogenesis in the Dragonfly, Crocothemis servilia Drury (고추잠자리의 精子完成의 電子顯微鏡的 硏究)

  • Paik, Kyong Ki;Choi, Choon Keun;Lee, Kuk Bum
    • The Korean Journal of Zoology
    • /
    • v.15 no.3
    • /
    • pp.133-147
    • /
    • 1972
  • Ultrastructures of spermiogeneis in other invertebrates were investigated by several workes (Anderson, et al., 1967; Bloch, et al., 1964; Christen, 1961; Gatenby, et al., 1959; Paik, et al., 1968; Silveira, 1964; Yasuzumi, 1957) but spermiogenesis of dragonfly has not been reported previously. Testes and vass deferentia of the Korean dragonfly, Crocothemis servilia, were used for electron microscopic study of spermiogenesis. Materials were prefixed for 1-2 hours at $3^{\circ}C$ in 1.25% glutaraldehyde buffered to pH 7.2 with 0.2M sodium cacodylate buffer. Fixed tissue was washed twice in 0.2M cacodylate buffer and was subsequently postfixed for 2 hours at $3^{\circ}C$ in 1% osmium tetroxide buffered to pH 7.2 with 0.4M sodium cacodylate buffer solution. Specimens were dehydrated in graded ethyl alcohol, and finally embedded in epoxy Epon resin. Thin sections prepared from all the blocks were doubly stained; first in uranyl acetate and then in lead citrate. All thin sectios were examined with a Hitachi HS-7S electron microscope. The results of this study were summarized as follows. 1. Along the condensation of chromatin in nucleus, the shpae of nucleus was changed from spherical shpae to ellipse and cone cell type. 2. During the elongation of nucleus and the migration of cytoplasm, the nucleus removed to the one side of spermatid and began to invaginate from the posterior portion of nucleus. 3. There are ring centrioles in invaginated portion and axial filaments derived from centriole extend to the tail through the tailward half of spermatid. 4. In the cross sections the axial filament consisted of a central sheath, a central fibril, and 9 peripheral doublets.

  • PDF

Effects of the Spectral Quality and Intensity of Light-Emitting Diodes on Growth and Biochemical Composition of Chlorella vulgaris (발광다이오드 광량 및 파장에 따른 Chlorella vulgaris의 생장 및 생화학적 조성 변화 연구)

  • Ji Seung Han;Peijin Li;Tae-Jin Choi;Seok Jin Oh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.878-888
    • /
    • 2023
  • Growth responses of Chlorella vulgaris exposed to different light intensities and wavelengths of light-emitting diodes (LEDs) were investigated. C. vulgaris was cultured under red LED (650 nm), blue LED (450 nm), green LED (520 nm), and fluorescent lamps (three wavelengths, control). The maximum growth rates (µmax) of C. vulgaris were highest under the blue LED, followed by the red LED, green LED, and fluorescent lamps. The low compensation photon flux density (I0) and low half-saturation constants (Ks) were observed in C. vulgaris cultured under the red LED, indicating that high C. vulgaris growth is closely related to the low light intensity of the red LED suggesting that the red LED can be useful for the biomass production of C. vulgaris. Furthermore, it was observed that under the blue LED during the stationary phase, there was an increase in useful bioactive substances, such as proteins and lipids, which are beneficial for biomass production. In conclusion, the red LED is an economical light source that can enhance cell density, and the blue LED is effective in promoting valuable intracellular substances.

Trabeculae in the basilar venous plexus: anatomical and histological study with application to intravascular procedures

  • Viktoriya S. Grayson;Mitchell Couldwell;Arada Chaiyamoon;Juan J. Cardona;Francisco Reina;Ana Carrera;Erin P. McCormack;Kendrick Johnson;Sassan Keshavarzi;Joe Iwanaga;Aaron S. Dumont;R. Shane Tubbs
    • Anatomy and Cell Biology
    • /
    • v.56 no.4
    • /
    • pp.435-440
    • /
    • 2023
  • Few studies have examined the basilar venous plexus (BVP) and to our knowledge, no previous study has described its histology. The present anatomical study was performed to better elucidate these structures. In ten cadavers, the BVP was dissected. The anatomical and histological evaluation of the intraluminal trabeculae within this sinus were evaluated. Once all gross measurements were made, the clivus and overlying BVP were harvested and submitted for histological analysis. A BVP was identified in all specimens and in each of these, intraluminal trabeculae were identified. The mean number of trabeculae per plexus was five. These were most concentrated in the upper half of the clivus and were more often centrally located. These septations traveled in a posterior to anterior direction and usually, from inferiorly to superiorly however some were noted to travel horizontally. In a few specimens the trabeculae had wider bases, especially on the posterior attachment to the meningeal layer of dura mater. More commonly, the trabeculae ended in a denticulate form at their two terminal ends. The trabeculae were on average were 0.85 mm in length. The mean width of the trabeculae was 0.35 mm. These septations were consistent with the cords of Willis as are found in the lumen of some of the other intradural venous sinuses. An understanding of the internal anatomy of the BVP can aid in our understanding of venous pathology. Furthermore, this knowledge will benefit patients undergoing interventional treatments that involve the BVP.

Design and Hardware Implementation of High-Speed Variable-Length RSA Cryptosystem (가변길이 고속 RSA 암호시스템의 설계 및 하드웨어 구현)

  • 박진영;서영호;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.9C
    • /
    • pp.861-870
    • /
    • 2002
  • In this paper, with targeting on the drawback of RSA of operation speed, a new 1024-bit RSA cryptosystem has been proposed and implemented in hardware to increase the operational speed and perform the variable-length encryption. The proposed cryptosystem mainly consists of the modular exponentiation part and the modular multiplication part. For the modular exponentiation, the RL-binary method, which performs squaring and modular multiplying in parallel, was improved, and then applied. And 4-stage CSA structure and radix-4 booth algorithm were applied to enhance the variable-length operation and reduce the number of partial product in modular multiplication arithmetic. The proposed RSA cryptosystem which can calculate at most 1024 bits at a tittle was mapped into the integrated circuit using the Hynix Phantom Cell Library for Hynix 0.35㎛ 2-Poly 4-Metal CMOS process. Also, the result of software implementation, which had been programmed prior to the hardware research, has been used to verify the operation of the hardware system. The size of the result from the hardware implementation was about 190k gate count and the operational clock frequency was 150㎒. By considering a variable-length of modulus number, the baud rate of the proposed scheme is one and half times faster than the previous works. Therefore, the proposed high speed variable-length RSA cryptosystem should be able to be used in various information security system which requires high speed operation.

Electrochemical Characteristics of Supercapacitor Based on Amorphous Ruthenium Oxide In Aqueous Acidic Medium (비정질 루테늄 산화물을 사용한 수계 Supercapacitor의 전기화학적 특성)

  • Choi, Sang-Jin;Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Su;Yug, Gyeong-Chang;Kim, Sang-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A supercapacitor was developed using an amorphous ruthenium oxide material. The electrode of supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloide hydrate$(RuCl_3{\cdo5}xH_2O)$. Thin film of tantalum was used as a current collector because it had wide. potential window characteristics than titanium and 575304 materials. A supercapacitor was assembled with ruthenium oxide as an electrode active material and 4.8M sulfuric acid solution as an electrolyte. The specific capacitance of the electrode was tested by a cyclic voltammetry using a half cell. The maximum differential specific capacitances during the oxidative and the reductive scans were 710 and $645\;F/g-RuO_2{\cdot}nH_2O$, respectively. The average specific capacitance was $521\;F/g-RuO_2{\cdot}nH_2O$. The assembled supercapacitor was protonated to the potential level of 0.5V vs. SCE. Super-capacitor, which was adjusted to the appropriate protonation level, had the specific capacitance of $151\;F/g-RuO_2{\cdot}nH_2O$ based on the concept of full cell.