DOI QR코드

DOI QR Code

Electron Acceptors in Organic Solar Cells

유기태양전지의 전자 받개 물질들

  • Kong, Jaemin (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Nam, Sang-Yong (Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 공재민 (경상국립대학교 그린에너지융합연구소) ;
  • 남상용 (경상국립대학교 그린에너지융합연구소)
  • Received : 2021.12.30
  • Accepted : 2022.02.11
  • Published : 2022.04.10

Abstract

The power conversion efficiency of organic solar cells has reached over 18%. The rapid increase in the efficiency is largely associated with the development of electron acceptors paired with proper electron donor polymers. In this mini review, the progress of organic solar cells is reviewed in terms of the development of electron acceptors. In the first part of the review, fullerene-based electron acceptors that have led the first half of organic solar cell development were dealt with. In the second part of it, nonfullerene-based electron acceptors, which have potentials to overcome the demerits of fullerene-based electron acceptors and opened a new era of organic solar cells, were introduced. Lastly, some suggestions to tackle the efficiency barrier of 20% are given with the summary of the review in the closing section.

최근 유기태양전지의 효율이 18%를 넘어섰다. 이러한 급속한 효율의 증가는 전자 주개 고분자와 짝을 이루는 전자 받개 물질의 개발과 깊은 연관성을 가지고 있다. 이 미니 리뷰에서는 전자 받개 물질의 개발 과정을 통해 유기태양전지의 발전 양상을 살펴본다. 본 리뷰의 첫 번째 파트에서는 유기태양전지 발전의 전반부를 이끌었던 풀러렌 기반 전자 받개 물질에 대해 살펴본다. 그리고 두 번째 파트에서는 풀러렌 기반 전자 받개 물질의 단점들을 극복할 잠재력을 가지고 있으며, 유기태양전지에 새로운 전기를 가져다 준 비(非)플러렌 기반 전자 받개 물질에 대해서 소개한다. 마지막 파트에서는 리뷰의 전체적인 요약과 더불어 20% 효율을 넘어설 전략에 대해 간단히 논의하며 본 리뷰를 마무리한다.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03038697, 2021R1A2C1008968).

References

  1. A. Pochettino, Sul comportamento foto-elettrico dell'antracene, Acad. Lincei Rend., 15, 355 (1906).
  2. H. Spanggaard and F. C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Sol. Energy Mater. Sol. Cells, 83, 125-146 (2004). https://doi.org/10.1016/j.solmat.2004.02.021
  3. G. M. Delacote, J. P. Fillard, and F. J. Marco, Electron injection in thin films of copper phtalocyanine, Solid State Commun. 2, 373-376 (1964). https://doi.org/10.1016/0038-1098(64)90185-1
  4. M. Knupfer, Exciton binding energies in organic semiconductors, Appl. Phys. A-Mater., 77, 623-626 (2003). https://doi.org/10.1007/s00339-003-2182-9
  5. C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett., 48, 183-185 (1986). https://doi.org/10.1063/1.96937
  6. M. Hiramoto, H. Fujiwara, and M. Yokoyama, Three-layered organic solar cell with a photoactive interlayer of codeposited pigments, Appl. Phys. Lett., 58, 1062-1064 (1991). https://doi.org/10.1063/1.104423
  7. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature, 376, 498-500 (1995). https://doi.org/10.1038/376498a0
  8. C. Deibel, D. Mack, J. Gorenflot, A. Scholl, S. Krause, F. Reinert, D. Rauh, and V. Dyakonov, Energetics of excited states in the conjugated polymer poly(3-hexylthiophene), Phys. Rev. B, 81, 085202 (2010). https://doi.org/10.1103/physrevb.81.085202
  9. O. V. Mikhnenko, H. Azimi, M. Scharber, M. Morana, P. W. M. Blom, and M. A. Loi, Exciton diffusion length in narrow bandgap polymers, Energ. Environ. Sci., 5, 6960-6965 (2012). https://doi.org/10.1039/c2ee03466b
  10. N. S. Sariciftci, L. Smilowitza, A. J. Heeger, and F. Wudl, Photo-induced electron transfer from a conducting polymer to buckminster-fullerene, Science, 258, 1474-1476 (1992). https://doi.org/10.1126/science.258.5087.1474
  11. J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, Preparation and characterization of fulleroid and methanofullerene derivatives, J. Org. Chem., 60, 532-538 (1995). https://doi.org/10.1021/jo00108a012
  12. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789-1791 (1995). https://doi.org/10.1126/science.270.5243.1789
  13. S. Zhang, L. Ye, W. Zhao, B. Yang, Q. Wang, and J. Hou, Realizing over 10% efficiency in polymer solar cell by device optimization, Sci. China Chem., 58, 248-256 (2015). https://doi.org/10.1007/s11426-014-5273-x
  14. C. Yan, S. Barlow, Z. Wang, H. Yan, A. K.-Y. Jen, S. R. Marder, and X. Zhan, Non-fullerene acceptors for organic solar cells, Nat. Rev. Mater. 3, 18003 (2018). https://doi.org/10.1038/natrevmats.2018.3
  15. C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, and Y. Sun, Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells,. Nat. Energy, 6, 605-613 (2021). https://doi.org/10.1038/s41560-021-00820-x
  16. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, 318, 162-163 (1985). https://doi.org/10.1038/318162a0
  17. S. Gelinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan, and R. H. Friend, Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes, Science, 343, 512- 516 (2014). https://doi.org/10.1126/science.1246249
  18. R. Taylor and D. R. M. Walton, The chemistry of fullerenes, Nature, 363, 685-693 (1993). https://doi.org/10.1038/363685a0
  19. M. Iyoda and M. Yoshida, Chemistry of fullerenes - the high reactivity and new developments, J Syn. Org. Chem. Jpn., 53, 756-769 (1995). https://doi.org/10.5059/yukigoseikyokaishi.53.756
  20. A. F. Kiely, R. C. Haddon, M. S. Meier, J. P. Selegue, C. P. Brock, B. O. Patrick, G.-W. Wang, and Y. Chen, The first structurally characterized homofullerene (Fulleroid), J. Am. Chem. Soc., 121, 7971-7972 (1999). https://doi.org/10.1021/ja991692y
  21. N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers, Chem. Phys. Lett., 241, 89-96 (1995). https://doi.org/10.1016/0009-2614(95)00584-Q
  22. G. J. Hedley, A. J. Ward, A. Alekseev, C. T. Howells, E. R. Martins, L. A. Serrano, G. Cooke, A. Ruseckas, and I. D. W. Samuel, Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells, Nat. Commun., 4, 2867- 2876 (2013). https://doi.org/10.1038/ncomms3867
  23. W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater., 15, 1617-1622 (2005). https://doi.org/10.1002/adfm.200500211
  24. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes, Adv. Funct. Mater., 17, 1636-1644 (2007). https://doi.org/10.1002/adfm.200600624
  25. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nat. Mater., 6, 497-500 (2007). https://doi.org/10.1038/nmat1928
  26. M. Lenes, G.-J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells, Adv. Mater., 20, 2116-2119 (2008). https://doi.org/10.1002/adma.200702438
  27. Y. J. He, H. Y. Chen, J. H. Hou, and Y. F. Li, Indene-C-60 bisadduct: a new acceptor for high-performance polymer solar cells, J. Am. Chem. Soc., 132, 1377-1382 (2010). https://doi.org/10.1021/ja908602j
  28. G. J. Zhao, Y. J. He, and Y. F. Li, 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-c-60 bisadduct by device optimization, Adv. Mater., 22, 4355-4358 (2010). https://doi.org/10.1002/adma.201001339
  29. J. W. Arbogast, C. S. Foote, Photophysical properties of C70, J. Am. Chem. Soc., 113, 8886-8889 (1991). https://doi.org/10.1021/ja00023a041
  30. M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen, Efficient methano [70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells, Angew. Chem. Int. Edit., 42, 3371-3375 (2003). https://doi.org/10.1002/anie.200351647
  31. W.-y. Zhou, S.-s. Xie, S.-f. Qian, T. Zhou, R.-a. Zhao, and G. Wang, Optical absorption spectra of C-70 thin films, J. Appl. Phys., 80, 459-463 (1996). https://doi.org/10.1063/1.362747
  32. L. Ye, S. Q. Zhang, W. C. Zhao, H. F. Yao, and J. H. Hou, Highly efficient 2d-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain, Chem. Mater., 26, 3603- 3605 (2014). https://doi.org/10.1021/cm501513n
  33. H. Yao, W. Zhao, Z. Zheng, Y. Cui, J. Zhang, Z. Wei, and J. Hou, PBDT-TSR: a highly efficient conjugated polymer for polymer solar cells with a regioregular structure, J. Mater. Chem., A, 4, 1708-1713 (2016). https://doi.org/10.1039/C5TA08614K
  34. M. A. Izquierdo, R. Broer, and R. W. A. Havenith, Theoretical study of the charge transfer exciton binding energy in semiconductor materials for polymer: fullerene-based bulk heterojunction solar cells, J. Phys. Chem. A, 123, 1233-1242 (2019). https://doi.org/10.1021/acs.jpca.8b12292
  35. X. Liu, Y. X. Li, K. Ding, and S. Forrest, Energy loss in organic photovoltaics: nonfullerene versus fullerene acceptors, Phys. Rev. Appl., 11, 024060 (2019). https://doi.org/10.1103/physrevapplied.11.024060
  36. J. H. Hou, O. Inganas, R. H. Friend, and F. Gao, Organic solar cells based on non-fullerene acceptors, Nat. Mater., 17, 119-128 (2018). https://doi.org/10.1038/nmat5063
  37. S. Y. Leblebici, T. L. Chen, P. Oalde-Veasco, W. L. Yang, and B. W. Ma, Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells, ACS. Appl. Mater. Inter., 5, 10105-10110 (2013). https://doi.org/10.1021/am402744k
  38. S. Kraner, R. Scholz, C. Koerner, and K. Leo, Design proposals for organic materials exhibiting a low exciton binding energy, J. Phys. Chem. C, 119, 22820-22825 (2015). https://doi.org/10.1021/acs.jpcc.5b07097
  39. H.-W. Li, Z. Guan, Y. Cheng, T. Lui, Q. Yang, C.-S. Lee, S. Chen, and S.-W. Tsang, On the study of exciton binding energy with direct charge generation in photovoltaic polymers, Adv. Electron. Mater., 2, 1600200 (2016). https://doi.org/10.1002/aelm.201600200
  40. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency, Adv. Mater., 18, 789 (2006). https://doi.org/10.1002/adma.200501717
  41. G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells-towards 15 % energy-conversion efficiency, Adv. Mater., 20, 579 (2008). https://doi.org/10.1002/adma.200702337
  42. Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, and X. Zhan, An electron acceptor challenging fullerenes for efficient polymer solar cells, Adv. Mater., 27, 1170-1174 (2015). https://doi.org/10.1002/adma.201404317
  43. W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganas, F. Gao, and J. Hou, Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability, Adv. Mater., 28, 4734-4739 (2016). https://doi.org/10.1002/adma.201600281
  44. D. Qian, L. Ye, M. Zhang, Y. Liang, L. Li, Y. Huang, X. Guo, S. Zhang, Z. Tan, and J. Hou, Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state, Macromolecules, 45, 9611-9617 (2012). https://doi.org/10.1021/ma301900h
  45. J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electrondeficient core, Joule, 3, 1140-1151 (2019). https://doi.org/10.1016/j.joule.2019.01.004
  46. C. H. Cui and Y. F. Li, High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap non-fullerene acceptors, Energ. Environ. Sci., 12, 3225-3246 (2019). https://doi.org/10.1039/c9ee02531f
  47. A. Armin, W. Li, O. J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T. Heumuller, C. Brabec, and P. Meredith, A history and perspective of non-fullerene electron acceptors for organic solar cells, Adv. Energy Mater., 11, 2003570 (2021). https://doi.org/10.1002/aenm.202003570
  48. S. Hood, N. Zarrabi, P. Meredith, I. Kassal, and A. Armin, Measuring energetic disorder in organic semiconductors using the photogenerated charge-separation efficiency, J. Phys. Chem. Lett., 10, 3863-3870 (2019). https://doi.org/10.1021/acs.jpclett.9b01304
  49. Y. Liu, Z. L. Zheng, V. Coropceanu, J. L. Bredas, and D. S. Ginger, Lower limits for non-radiative recombination loss in organic donor/acceptor complexes, Mater. Horiz., 9, 325-333 (2022). https://doi.org/10.1039/D1MH00529D