• 제목/요약/키워드: hair follicle

검색결과 167건 처리시간 0.019초

Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration

  • Chaeryeong Lim;Jooyoung Lim;Sekyu Choi
    • Molecules and Cells
    • /
    • 제46권10호
    • /
    • pp.573-578
    • /
    • 2023
  • The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.

사람태아 성장기 모낭에서 결합조직-상피 경계부의 미세구조에 관한 연구 (Ultrastructural Study on Connective Tissue-Epithelial Junctions in Anagen Hair Follicle of Human Fetus)

  • 김백윤;박민아;남광일
    • Applied Microscopy
    • /
    • 제27권3호
    • /
    • pp.321-332
    • /
    • 1997
  • The dermal papilla is known to playa major role in influencing the form and dynamics of the hair follicle, which probably involves regulatory substances crossing the basal lamina. But little is known about the junctions between the dermal papilla and the surrounding epithelial cells of the hair bulb, or between the connective tissue and the epithelial cells on the outside of the hair follicle. This study was performed to identify the ultrastructural differences between dermoepidermal junction of the skin and connective tissue-epithelial junctions on the outside of the hair follicle and around the dermal papilla of normal anagen hair follicles in the human fetal scalp skin. Electron microscopic findings of dermoepidermal junction in scalp skin showed that basal lamina was very irregular and undulated, and it contained many attachment plaques of hemidesmosomes with sub-basal dense plates, tonofilaments, and anchoring filaments. Also invaginations of plasma membrane of basal keratinocytes were seen. There were clear differences both on the outside of the follicle and around the dermal papilla as compared with similar junction in the skin. In particular, neither hemidesmosomes nor tonofilaments, as seen in dermoepidermal junction, were observed in the dermal papilla. Also attachment plaque, sub-basal dense plate and anchoring filaments were not observed at the junction on the outside of the follicle and the dermal papilla. There were some differences between connective tissue-epithelial junctions on the outside of the hair follicle and around the dermal papilla, ie, smoothness of basal lamina and orthogonal arrangement of collagen fibers were seen in the outside of hair follicle, but not in the dermal papilla. These results indicate that the mechanical connection between the hair follicle and the connective tissue component is much weaker than that between the corresponding components in skin, and it reflects the dynamic processes during the anagen phase of the hair follicle compared to the relatively permanent state of the epidermis.

  • PDF

Aging of hair follicle stem cells and their niches

  • Hansaem Jang;Yemin Jo;Jung Hyun Lee;Sekyu Choi
    • BMB Reports
    • /
    • 제56권1호
    • /
    • pp.2-9
    • /
    • 2023
  • Hair follicles in the skin undergo cyclic rounds of regeneration, degeneration, and rest throughout life. Stem cells residing in hair follicles play a pivotal role in maintaining tissue homeostasis and hair growth cycles. Research on hair follicle aging and age-related hair loss has demonstrated that a decline in hair follicle stem cell (HFSC) activity with aging can decrease the regeneration capacity of hair follicles. This review summarizes our understanding of how age-associated HFSC intrinsic and extrinsic mechanisms can induce HFSC aging and hair loss. In addition, we discuss approaches developed to attenuate ageassociated changes in HFSCs and their niches, thereby promoting hair regrowth.

Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model

  • Keum, Dong In;Pi, Long-Quan;Hwang, Sungjoo Tommy;Lee, Won-Soo
    • Journal of Ginseng Research
    • /
    • 제40권2호
    • /
    • pp.169-175
    • /
    • 2016
  • Background: Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. Methods: We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Results: 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Conclusion: Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression.

A novel and safe small molecule enhances hair follicle regeneration by facilitating metabolic reprogramming

  • Son, Myung Jin;Jeong, Jae Kap;Kwon, Youjeong;Ryu, Jae-Sung;Mun, Seon Ju;Kim, Hye Jin;Kim, Sung-wuk;Yoo, Sanghee;Kook, Jiae;Lee, Hongbum;Kim, Janghwan;Chung, Kyung-Sook
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.5.1-5.15
    • /
    • 2018
  • Targeting hair follicle regeneration has been investigated for the treatment of hair loss, and fundamental studies investigating stem cells and their niche have been described. However, knowledge of stem cell metabolism and the specific regulation of bioenergetics during the hair regeneration process is currently insufficient. Here, we report the hair regrowth-promoting effect of a newly synthesized novel small molecule, IM176OUT05 (IM), which activates stem cell metabolism. IM facilitated stemness induction and maintenance during an induced pluripotent stem cell generation process. IM treatment mildly inhibited mitochondrial oxidative phosphorylation and concurrently increased glycolysis, which accelerated stemness induction during the early phase of reprogramming. More importantly, the topical application of IM accelerated hair follicle regeneration by stimulating the progression of the hair follicle cycle to the anagen phase and increased the hair follicle number in mice. Furthermore, the stem cell population with a glycolytic metabotype appeared slightly earlier in the IM-treated mice. Stem cell and niche signaling involved in the hair regeneration process was also activated by the IM treatment during the early phase of hair follicle regeneration. Overall, these results show that the novel small molecule IM promotes tissue regeneration, specifically in hair regrowth, by restructuring the metabolic configuration of stem cells.

Lgr5와 결합하는 신규 헵타펩타이드를 이용한 인체 모낭 세포의 활성과 모낭줄기세포 분화 유도 (Novel Heptapeptide Binds to the Lgr5 Induces Activation of Human Hair Follicle Cells and Differentiation of Human Hair Follicle Bulge Stem Cells)

  • 김민웅;이응지;길하나;정용지;김은미
    • 대한화장품학회지
    • /
    • 제49권1호
    • /
    • pp.75-85
    • /
    • 2023
  • 본 연구에서는 7 개의 아미노산으로 이루어진 헵타펩타이드의 Lgr5 binding에 따른 인체 모낭 구성 세포의 활성에 대한 영향을 확인하였다. 표면 플라즈몬 공명(surface plasmon resonance, SPR) 시스템을 이용하여 헵타펩타이드가 Lgr5에 결합하는 것을 확인하였다. 인체 모유두세포(human hair follicle dermal papilla cell, HHFDPC)에 헵타펩타이드를 처리한 결과, 농도 의존적인 세포 증식이 나타났으며 β-catenin의 세포 내핵 이동 및 하위 유전자인 LEF1, Cyclin-D1, c-Myc의 발현 증가가 관찰되었다. 그리고 세포 증식 기전 관련 인자인 Akt와 ERK의 인산화 수준이 증가되었으며, 성장인자인 hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF) 발현이 유도되었다. 또한 인체 모모세포(human hair germinal matrix cell, HHGMC)의 분화 관련 전사 인자와 인체 외모근초세포(human hair outer root sheath cell, HHORSC)의 분화 표지 인자들도 헵타펩타이드 처리 시 높은 발현율을 보였다. 추가적으로 우리는 헵타펩타이드의 인체 모낭줄기세포(human hair follicle stem cell, HHFSC) 분화에 대한 영향을 조사하였다. 그 결과, HHFSC 표지인자들의 mRNA와 단백질 수준이 감소하였고 반면에 분화 표지인자들은 증가하였다. 상기의 결과들은 헵타펩타이드가 인체 모낭 구성 세포에서 Wnt/β-catenin 경로를 촉진시켜 증식 또는 분화를 유도할 수 있음을 보여준다. 이를 토대로 종합해 볼 때, 본 연구의 헵타펩타이드는 모발 성장을 유도하고 탈모 개선에 도움을 줄 수 있는 기능성 원료로 사용될 수 있을 것으로 보인다.

침구요법(鍼灸療法)에 의한 발모관련 인자들의 발현에 대한 실험적 연구 (Experimental Studies on the Expression of Hair Growth Related Factors after Acupuncture & Moxibustion Therapy)

  • 김호일;김정무;이창현
    • 동의생리병리학회지
    • /
    • 제25권4호
    • /
    • pp.674-682
    • /
    • 2011
  • The present study was undertaken to investigate the effect of acupuncture & moxibustion therapy on the hair follicle growth of skin 5 days and 10 days by macroscopic, microscopic and immunohistochemical methods. The results were as follows : Macroscopic hair follicle growth of plum-blossom needle treated group and strong moxibustion treated group was more increase than that of control group. Microscopic hair follicle growth of plum-blossom needle treated group and strong moxibustion treated group was hair growing cycle, anagen phase VI and that of control group and weak moxibustion treated group was hair growing cycle, anagen phase IV. Immunohistochemical observations on the expression of various growth factors, enzyme and receptor in hair follicle cycle after local treatment of acupuncture & moxibustion therapy are as follows: Expression of fibroblast growth factor was more intense in epidermis in plum-blossom needle treated group, epidermis and secondary hair germ cells in strong moxibustion treated group than control group. Expression of epidermal growth factor was more intense in epidermis in all experimental groups, and secondary hair germ cells in moxibustion treated group than control group. Expression of c-kit receptor was more intense in epidermis, secondary hair germ cells, outer root sheath in all experimental groups than control group. Expression of protein kinase C-${\alpha}$ was more intense in epidermis, secondary hair germ cells, outer root sheath in all experimental groups than control group. Expression of vascular endothelial growth factor was more intense in epidermis, bulge, secondary hair germ cells, outer root sheath in plum-blossom needle treated group and strong moxibustion treated group than control group. We concluded that acupuncture & moxibustion therapy related to the expression of various growth factors, enzymes and receptor on the hair growth cycle for hair growth.

효모성분추출물의 탈모치료 효과와 줄기세포활성화제 역할 (HAIR loss treatment effect and stem cell activator role of Yeast Constituent Extract)

  • 김영실;이혜진;박정은;김진휘
    • 한국산업융합학회 논문집
    • /
    • 제17권3호
    • /
    • pp.178-183
    • /
    • 2014
  • The objective of this study is to find out the effect of yeast on hair loss treatment and the role of hair follicle stem cell activator, which is important in hair growth. The authors have recently produced a substance, which has no disgusting odor, does not precipitates and does not easily corrupt, to use instead of yeast acquired from raw rice wine(Makgeolli). The substance is named Yeast Constituent Extract(YCE). In this research, the Produced YCE was applied on the hair loss area of 10 Androgenic alopecia patients, twice every day for 6 months, in order to test the effect of hair loss treatment and the role of stem cell activator. As a result, all of the patients showed a significant growth of hair after 3 months of test, and showed much more growing, thickening and strengthening of hair after 6 months. As a result of measuring the number of hair strings in the same scalp region of the patients after 6 months, it is found that the density of hair has increased, indicating that the hair loss treatment was effective. Also the hair follicle stem cell was isolated from the patients and the contents of growth factors (IGF, VEGF, FGF, HGF) derived from hair follicle stem cell were measured with ELISA. As result, the amount is found to be about 10 times greater than before the test. The hair follicle stem cell contains many growth factors that affect growth of hair, so it takes a highly important role in hair loss treatment. The YCE that the authors have produced was found to be effective in increasing the contents of growth factors that are derived from hair follicle stem cell. Thus it can be inferred that the YCE plays a role as a stem cell activator that activates the hair follicle stem cells. In conclusion, the YCE is considered to be highly effective for hair loss treatment and to have a role as a stem cell activator.

Deficiency of Formyl Peptide Receptor 2 Retards Hair Regeneration by Modulating the Activation of Hair Follicle Stem Cells and Dermal Papilla Cells in Mice

  • Han, Jinsol;Lee, Chanbin;Jung, Youngmi
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권4호
    • /
    • pp.279-291
    • /
    • 2021
  • Hair loss is one of the most common chronic diseases, with a detrimental effect on a patient's psychosocial life. Hair loss results from damage to the hair follicle (HF) and/or hair regeneration cycle. Various damaging factors, such as hereditary, inflammation, and aging, impair hair regeneration by inhibiting the activation of hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs). Formyl peptide receptor 2 (FPR2) regulates the inflammatory response and the activity of various types of stem cells, and has recently been reported to have a protective effect on hair loss. Given that stem cell activity is the driving force for hair regeneration, we hypothesized that FPR2 influences hair regeneration by mediating HFSC activity. To prove this hypothesis, we investigated the role of FPR2 in hair regeneration using Fpr2 knockout (KO) mice. Fpr2 KO mice were found to have excessive hair loss and abnormal HF structures and skin layer construction compared to wild-type (WT) mice. The levels of Sonic hedgehog (Shh) and β-catenin, which promote HF regeneration, were significantly decreased, and the expression of bone morphogenetic protein (Bmp)2/4, an inhibitor of the anagen phase, was significantly increased in Fpr2 KO mice compared to WT mice. The proliferation of HFSCs and DPCs was significantly lower in Fpr2 KO mice than in WT mice. These findings demonstrate that FPR2 impacts signaling molecules that regulate HF regeneration, and is involved in the proliferation of HFSCs and DPCs, exerting a protective effect on hair loss.

Efficacy of Caffeine in Promoting Hair Growth by Enhancing Intracellular Activity of Hair Follicles

  • Kim, Sehyun;Kim, Su Na;Jeong, Gyusang;Hong, Min Jung;Lee, Yonghee;Shin, Seung Hyun;Park, Hyeokgon;Jung, Yu Chul;Kim, Eun Joo;Park, Byung Cheol;Kim, Hyoung-June
    • Korea Journal of Cosmetic Science
    • /
    • 제1권1호
    • /
    • pp.11-18
    • /
    • 2019
  • Caffeine is widely used in cosmetics and hair care products. Although its efficacy in stimulating hair growth has been confirmed in recent studies, its mechanism of action remains unelucidated. The present study aimed to determine the effects of caffeine on hair growth, with a focus on intracellular hair follicle activity. Experiments included in vitro and ex vivo tests, and a clinical study. Caffeine enhanced the cellular activity and potassium channel opening. It also promoted human hair follicle elongation. Immunohistochemical staining showed that the Ki-67 signal was significantly higher in cells treated with caffeine. These efficacies of caffeine were comprehensively demonstrated in clinical results, wherein caffeine-containing shampoo improved hair density after 24 weeks of testing. Collectively, the results of this study demonstrated that caffeine promoted hair growth and inhibited the progression of hair loss by enhancing intracellular activity of hair follicles.