Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.472-474
/
2014
현재 자동차 교통사고 발생원인 중 타이어의 불량으로 인한 교통사고는 매년 급증하고 있다. 자동차 타이어의 상태를 점검하여 미연에 사고를 예방하는 캠페인이 방송매체를 통해 진행되고 있으며 이와 관련된 행사도 실시하고 있다. 기존의 타이어 측정방법은 객관적이지 못하며 전문적인 기관에 의뢰해도 사정은 마찬가지다. 운전자에게 편리하며 객관적인 타이어 상태를 측정하려는 방법은 연구되지 않는다. 본 논문에서는 운전자에게 편리하며 객관적인 타이어 상태 정보를 제공하고, 계속적으로 누적된 타이어 상태 측정데이터를 분석하여 운전자에게 유용한 타이어 상태정보를 제공하는 시스템을 설계하기 위한 연구내용을 다룬다.
International Journal of Internet, Broadcasting and Communication
/
v.11
no.2
/
pp.50-58
/
2019
The clear and specific objective of this study is to design a false news discriminator algorithm for news articles transmitted on a text-based basis and an architecture that builds it into a system (H/W configuration with Hadoop-based in-memory technology, Deep Learning S/W design for bigdata and SNS linkage). Based on learning data on actual news, the government will submit advanced "fake news" test data as a result and complete theoretical research based on it. The need for research proposed by this study is social cost paid by rumors (including malicious comments) and rumors (written false news) due to the flood of fake news, false reports, rumors and stabbings, among other social challenges. In addition, fake news can distort normal communication channels, undermine human mutual trust, and reduce social capital at the same time. The final purpose of the study is to upgrade the study to a topic that is difficult to distinguish between false and exaggerated, fake and hypocrisy, sincere and false, fraud and error, truth and false.
Park, Joon-Ha;Lee, Byung-Hee;Park, Sang-Jae;Lee, Jeong-Joon
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1199-1202
/
2013
최근 증권, 센서, 기후, 의료 분야 등에서 수많은 시계열 데이터들이 쏟아져 나오고 있고, 이러한 시계열 빅 데이터를 통해 의미를 찾아내고자 하는 시계열 해석 및 분석, 예측 작업의 수요가 증가하고 있다. 시계열 해석 및 분석, 예측 작업을 하기 위해서 사용 될 수 있는 기초 작업은 유사한 시계열 시퀀스를 찾아내는 유사 시퀀스 매칭과 이러한 매칭을 통해 특정 시계열 데이터의 하나의 특징이 되는 빈발 시퀀스 추출 기술이 필요하다. 본 논문에서는 이러한 시계열 빅 데이터에서 유사 시퀀스 매칭을 이용한 빈발 시퀀스 추출 문제를 효율적으로 해결하는 빈발 시퀀스 추출기(Frequent Sequence Extractor)를 개발 및 구현하였다. 또한 분산처리 플랫폼인 하둡을 이용한 데이터 파싱을 사용하여, 각 분야별 시계열 데이터를 분석하는 전문가에게 효율적인 분산처리 효과를 제공한다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1135-1136
/
2013
인터넷의 발달함에 따라 데이터가 기존에 비해 기하급수적으로 늘어나게 되는 이른바 빅데이터 시대를 맞이하게 되었다. 이러한 빅데이터는 기존의 시스템으로 처리하기가 쉽지 않아 이를 처리하기 위해 하둡이 개발되었다. 하둡은 분산파일 시스템으로 기존의 시스템에 비해 빅데이터를 처리하는데 적합하며 이를 이용한 다양한 오픈 소스들이 등장하게 된다. 그중 기계학습 알고리즘을 구현한 오픈소스 Mahout은 추천 시스템을 구현하는데 적합하다. 이를 이용하여 기존에 구현한 개인화 영화 추천 시스템을 하둡 시스템으로 구현하고 기존의 XLMiner로 구현한 시스템과 결과를 비교해 본다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.740-743
/
2013
클라우드 컴퓨팅 환경에서는 사용자의 데이터를 수많은 분산서버를 이용하여 데이터를 암호화하여 저장한다. 구글, 야후 등 글로벌 인터넷 서비스 업체들은 인터넷 서비스 플랫폼의 중요성을 인식하고 자체 연구 개발을 수행, 저가 상용 노드를 기반으로 한 대규모 클러스터 기반의 클라우드 컴퓨팅 플랫폼 기술을 개발 활용하고 있다. 이와 같이 분산 컴퓨팅 환경에서 다양한 데이터 서비스가 가능해지면서 대용량 데이터의 분산관리가 주요 이슈로 떠오르고 있다. 한편, 대용량 데이터의 다양한 이용 형태로부터 악의적인 공격자나 내부 사용자에 의한 보안 취약성 및 프라이버시 침해가 발생할 수 있다. 특히, 하둡에서 데이터 블록의 권한 제어를 위해 사용하는 블록 접근 토큰에도 다양한 보안 취약점이 발생한다. 이러한 보안 취약점을 보완하기 위해 본 논문에서는 비밀분산 기반의 블록 접근 토큰 관리 기법을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.137-138
/
2009
다양한 스토리지와 파일 시스템이 시스템의 신뢰도를 증가시키기 위해 스냅샷을 이용하고 있다.[1] 또한, 최근에는 정보 보호의 중요성에 관심이 많아지면서 많은 시스템이 자료 보안에 신경을 쓰고 있다. 하지만, 대표적인 분산 컴퓨터 시스템 중 하나인 하둡은 관련 기능을 제공하지 않는데, 이는 나중에 문제가 될 만한 여지가 농후하다. 본 논문에서는 현재 하둡 시스템의 신뢰도에 영향을 끼치는 결점에 대하여 언급하고, 그에 대한 보완의 일부로 스냅샷과 접근 제어 기능을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.354-356
/
2022
소셜 네트워크 및 웹 데이터와 같은 대규모 그래프 데이터를 처리하기 위해 병렬 처리 기반의 기법들이 많이 사용되어 왔다. 본 연구에서는 그래프 형식의 대규모 교통 데이터를 하둡 맵리듀스를 이용하여 처리하는 효과적인 기법을 제안한다. 제안하는 방식에서는 도시의 유동 인구 흐름을 가중치로 고려할 수 있도록 Weighted PageRank 알고리즘을 기반으로 하는 병렬 그래프 알고리즘을 사용하며, 해당 알고리즘을 하둡 맵리듀스에 적용하여 주거 및 근무지 등의 지역을 분류하도록 결과를 분석하였다. 제안 기법을 통한 분석 결과를 기반으로 지역 간 유동 인구 그래프 데이터에서 각 도시의 영향력을 측정하는 페이지랭크, 하둡 맵리듀스 기반의 기법을 제시한다.
Hong, Seok-min;Yoo, Yeon-jun;Lee, Hyeop Geon;Kim, Young Woon
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.77-79
/
2022
IT기술이 발전함에 따라 전 세계 데이터의 규모는 매년 증가하고 있다. 빅데이터 플랫폼을 사용하는 기업들은 더욱 빠른 빅데이터 처리를 원하고 있다. 이에 본 논문은 하둡 환경에서 GPU를 사용한 Job 처리 방법을 제안한다. 제안하는 방법은 CPU, GPU 클러스터를 따로 구성하여 세 가지 크기로 분류한 Job들을 알맞은 클러스터에 할당하여 처리한다. 향후, 제안하는 방법의 실질적인 검증을 위해 실제 구현과 성능 평가가 필요하다.
Dongyeop Lee;Daesik Lim;Soojeong Woo;Youngho Moon;Minjeong Kim;Joonwon Lee
Journal of Advanced Navigation Technology
/
v.28
no.1
/
pp.159-162
/
2024
This paper proposes a novel safety autonomous platform (SAP) architecture that can automatically and precisely manage on-site safety through ensemble artificial intelligence models generated from video information, worker's biometric information, and the safety rule to estimate the risk index. We practically designed the proposed SAP architecture by the Hadoop ecosystem with Kafka/NiFi, Spark/Hive, Hue, ELK (Elasticsearch, Logstash, Kibana), Ansible, etc., and confirmed that it worked well with safety mobility gateways for providing various safety applications.
International Journal of Internet, Broadcasting and Communication
/
v.16
no.2
/
pp.119-126
/
2024
The volume of genomic data is constantly increasing in various modern industries and research fields. This growth presents new challenges and opportunities in terms of the quantity and diversity of genetic data. In this paper, we propose a distributed cloud system for integrating and managing large-scale gene databases. By introducing a distributed data storage and processing system based on the Hadoop Distributed File System (HDFS), various formats and sizes of genomic data can be efficiently integrated. Furthermore, by leveraging Spark on YARN, efficient management of distributed cloud computing tasks and optimal resource allocation are achieved. This establishes a foundation for the rapid processing and analysis of large-scale genomic data. Additionally, by utilizing BigQuery ML, machine learning models are developed to support genetic search and prediction, enabling researchers to more effectively utilize data. It is expected that this will contribute to driving innovative advancements in genetic research and applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.