• Title/Summary/Keyword: hCOL1A2

Search Result 49, Processing Time 0.022 seconds

Cloning and Characterization of a Cellulase Gene from a Plant Growth Promoting Rhizobacterium, Bacillus subtilis AH18 against Phytophthora Blight Disease in Red-Pepper (고추역병을 방제하는 PGPR균주 Bacillus subtilis AH18의 항진균성 Cellulase 유전자의 Cloning 및 효소 특성 조사)

  • Woo, Sang-Min;Jung, Hee-Kyoung;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.311-317
    • /
    • 2006
  • Using PCR amplification, we cloned a cellulase gene (ce/H) from the Bacillus subtilis AH18 which has plant growth-promoting activity and antagonistic ability against pepper blight caused by Phytophthora capsici. The 1.6 kb PCR fragment contained the full sequence of the cellulase gene and the 1,582 bp gene deduced a 508 amino acid sequence. Similarity search in protein database revealed that the cellulase of B. subtilis AH18 was more than 98% homologous in the amino acid sequence to those of several major Bacillus spp. The ce/H was expressed in E. coli under an IPTG inducible lac promoter on the vector, had apparent molecular weight of about 55 kDa upon CMC-SDS-PAGE analysis. Partially purified cellulase had not only cellulolytic activity toward carboxymethyl-cellulose (CMC) but also insoluble cellulose, such as Avicel and filter paper (Whatman No. 1). In addition, the cellulase could degrade a fungal cell wall of Phytophthora capsici. The optimum pH and temperature of the ce/H coded cellulase were determined to be pH 5.0 and $50^{\circ}C$. The enzyme activity was activated by $AgNO_3$ or $CoCl_2$. However its activity was Inhibited by $HgC1_2$. The enzyme activity was activated by hydroxy urea or sodium azide and inhibited by CDTA or EDTA. The results indicate that the cellulase gene, ce/H is an antifungal mechanism of B. subtilis AH18 against phytophthora blight disease in red-pepper.

Synthesis and Crystal Structure of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System CaO-$C_2 H_5 OH$-$CO_2$ (CaO-$C_2 H_5 OH$-$CO_2$계의 기.액반응에 의한 비정질 탄산칼슘의 합성 및 결정구조)

  • Im, Jae-Seok;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.97-109
    • /
    • 2004
  • The synthesis and crystal structure of amorphous calcium carbonate obtained from gas-liquid reaction of CaO-$C_2 H_5 OH$-$CO_2$ system according to change of added amount of calcium oxide by blowing $CO_2$ gas and reaction time using ethanol and ethylene glycol were investigated by electric conductivity, X-ray diffraction, and scanning electron microscope. The powdery or gelatinous phases were prepared by passing $CO_2$ gas at a flow rate of 1$\ell$/min into the suspensions containing 10~40g of CaO in mixing solutions 900ml of $C_2 H_5 OH$- and 100ml of ethylene glycol. By rapid filtration and drying the both phases at $60^{\circ}C$ under reduced pressure, the phases converted to the spherical vaterite and amorphous phase. The stable phase of amorphous calcium carbonate(ACC) was formed in the region pH 7-9 but the formation regions of amorphous phase were remarkably affected by pH in the mother liquor. It seems that a part of ACC changed into chain calcite as an intermediate products. The initial reactants prior to the formation of precipitated calcium carbonate is ACC. And ACC is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. Especially ACC was produced or gelatinous phase which precipitated from the reaction of CaO-$C_2 H_5 OH$-$CO_2$ system.

  • PDF

Antibacterial, Antioxidant, and Antiaging Effects of the Ethanol Extract of Dolnamul (Sedum sarmentosum) and the Production of the Oil in Water Cream (돌나물(Sedum sarmentosum) 에탄올 추출물의 항균, 항산화, 항노화 효과와 수중유적형 크림의 제조)

  • Kim, Young Dae;Kim, Young Min;Mo, Eun Kyoung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • This study was performed to investigate the functional properties and characteristics of Dolnamul (Sedum sarmentosum) as a cosmetic ingredient. Lyophilized sedum powder was extracted with ethanol and stored at $-20^{\circ}C$ for the following experiments. Total polyphenol compounds of the ethanol extract of sedum (SE) was $27.98{\pm}0.34g/kg$(dry weight): epicatechin ($162.14{\pm}5.07mg/kg$), epigallocatechin ($55.99{\pm}2.49mg/kg$), and kaempferol ($47.96{\pm}3.02mg/kg$) were contained in the SE. The SE had organic radical scavenging capacity ($78.43{\pm}1.08%$) and metal reducing power (FRAP value $2.54{\pm}0.12$). FTC and TBARS assays confirmed that the SE inhibited the early stage of lipid peroxidation ($62.03{\pm}0.38%$) as well as the final stage of lipid peroxidation ($55.36{\pm}2.05%$), respectively. The SE (5 mg/mL, dry weight) was proved to have antibacterial effect on the growth of Propionibacterium acnes. The inhibitory percentages of the SE on elastase and collagenase activities were $38.94{\pm}7.09%$ and $78.94{\pm}2.49%$, respectively. Compare to the control group, the SE treated group induced an increase of Col3A1 expression and collagen production ($58.11{\pm}1.07%$). The oil in water emulsion (0.5% SE adding group) showed pH 6.88 and 1.47 g/mL of density. The hardness changes of the SE adding emulsions were not detected during the stored periods at various temperatures ($-20-45^{\circ}C$) for four weeks. It is considered that the SE has antibacterial, antioxidant, and antiaging activities.

Protective effects of remifentanil against H2O2-induced oxidative stress in human osteoblasts

  • Yoon, Ji-Young;Kim, Do-Wan;Kim, Eun-Jung;Park, Bong-Soo;Yoon, Ji-Uk;Kim, Hyung-Joon;Park, Jeong-Hoon
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.4
    • /
    • pp.263-271
    • /
    • 2016
  • Background: Bone injury is common in many clinical situations, such as surgery or trauma. During surgery, excessive reactive oxygen species (ROS) production decreases the quality and quantity of osteoblasts. Remifentanil decreases ROS production, reducing oxidative stress and the inflammatory response. We investigated remifentanil's protective effects against $H_2O_2$-induced oxidative stress in osteoblasts. Methods: To investigate the effect of remifentanil on human fetal osteoblast (hFOB) cells, the cells were incubated with 1 ng/ml of remifentanil for 2 h before exposure to $H_2O_2$. For induction of oxidative stress, hFOB cells were then treated with $200{\mu}M$ $H_2O_2$ for 2 h. To evaluate the effect on autophagy, a separate group of cells were incubated with 1 mM 3-methyladenine (3-MA) before treatment with remifentanil and $H_2O_2$. Cell viability and apoptotic cell death were determined via MTT assay and Hoechst staining, respectively. Mineralized matrix formation was visualized using alizarin red S staining. Western blot analysis was used to determine the expression levels of bone-related genes. Results: Cell viability and mineralized matrix formation increased on remifentanil pretreatment before exposure to $H_2O_2$-induced oxidative stress. As determined via western blot analysis, remifentanil pretreatment increased the expression of bone-related genes (Col I, BMP-2, osterix, and $TGF-{\beta}$). However, pretreatment with 3-MA before exposure to remifentanil and $H_2O_2$ inhibited remifentanil's protective effects on hFOB cells during oxidative stress. Conclusions: We showed that remifentanil prevents oxidative damage in hFOB cells via a mechanism that may be highly related to autophagy. Further clinical studies are required to investigate its potential as a therapeutic agent.

Potential biomarkers and signaling pathways associated with the pathogenesis of primary salivary gland carcinoma: a bioinformatics study

  • Bayat, Zeynab;Ahmadi-Motamayel, Fatemeh;Salimi Parsa, Mohadeseh;Taherkhani, Amir
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.42.1-42.17
    • /
    • 2021
  • Salivary gland carcinoma (SGC) is rare cancer, constituting 6% of neoplasms in the head and neck area. The most responsible genes and pathways involved in the pathology of this disorder have not been fully understood. We aimed to identify differentially expressed genes (DEGs), the most critical hub genes, transcription factors, signaling pathways, and biological processes (BPs) associated with the pathogenesis of primary SGC. The mRNA dataset GSE153283 in the Gene Expression Omnibus database was re-analyzed for determining DEGs in cancer tissue of patients with primary SGC compared to the adjacent normal tissue (adjusted p-value < 0.001; |Log2 fold change| > 1). A protein interaction map (PIM) was built, and the main modules within the network were identified and focused on the different pathways and BP analyses. The hub genes of PIM were discovered, and their associated gene regulatory network was built to determine the master regulators involved in the pathogenesis of primary SGC. A total of 137 genes were found to be differentially expressed in primary SGC. The most significant pathways and BPs that were deregulated in the primary disease condition were associated with the cell cycle and fibroblast proliferation procedures. TP53, EGF, FN1, NOTCH1, EZH2, COL1A1, SPP1, CDKN2A, WNT5A, PDGFRB, CCNB1, and H2AFX were demonstrated to be the most critical genes linked with the primary SGC. SPIB, FOXM1, and POLR2A significantly regulate all the hub genes. This study illustrated several hub genes and their master regulators that might be appropriate targets for the therapeutic aims of primary SGC.

Leonurus sibiricus L. ethanol extract promotes osteoblast differentiation and inhibits osteoclast formation

  • Jae‑Hyun Kim;Minsun Kim;Hyuk‑Sang Jung;Youngjoo Sohn
    • International Journal of Molecular Medicine
    • /
    • v.44 no.3
    • /
    • pp.913-926
    • /
    • 2019
  • Leonurus sibiricus L. (LS) is a medicinal plant used in East Asia, Europe and the USA. LS is primarily used in the treatment of gynecological diseases, and recent studies have demonstrated that it exerts anti-inflammatory and antioxidant effects. To the best of our knowledge, the present study demonstrated for the first time that LS may promote osteoblast differentiation and suppress osteoclast differentiation in vitro, and that it inhibited lipopolysaccharide (LPS)-induced bone loss in a mouse model. LS was observed to promote the osteoblast differentiation of MC3T3-E1 cells and upregulate the expression of runt-related transcription factor 2 (RUNX2), a key gene involved in osteoblast differentiation. This resulted in the induction of the expression of various osteogenic genes, including alkaline phosphatase (ALP), osteonectin (OSN), osteopontin (OPN), type I collagen (COL1) and bone sialoprotein (BSP). LS was also observed to inhibit osteoclast differentiation and bone resorption. The expression levels of nuclear factor of activated T-cells 1 (NFATc1) and c-Fos were inhibited following LS treatment. NFATc1 and c-Fos are key markers of osteoclast differentiation that inhibit receptor activator of nuclear factor-κB ligand (RANKL)-induced mitogen-activated protein kinase (MAPKs) and nuclear factor (NF)-κB. As a result, LS suppressed the expression of osteoclast-associated genes, such as matrix metallopeptidase-9 (MMP-9), cathepsin K (Ctsk), tartrate-resistant acid phosphatase (TRAP), osteoclast-associated immunoglobulin-like receptor (OSCAR), c-src, c-myc, osteoclast stimulatory transmembrane protein (OC-STAMP) and ATPase H+ transporting V0 subunit d2 (ATP6v0d2). Consistent with the in vitro results, LS inhibited the reduction in bone mineral density and the bone volume/total volume ratio in a mouse model of LPS-induced osteoporosis. These results suggest that LS may be a valuable agent for the treatment of osteoporosis and additional bone metabolic diseases.

Comprehensive analysis of lncRNAs modified by m6A methylation in sheep skin

  • Jinzhu Meng;Jianping Li;Yuanyuan Zhao
    • Animal Bioscience
    • /
    • v.37 no.11
    • /
    • pp.1887-1900
    • /
    • 2024
  • Objective: N6-methyladenosine (m6A) is the most prevalent methylation of mRNA and plays crucial roles in various physiological processes, including pigmentation. Yet, the regulatory mechanisms, including long noncoding RNAs (lncRNAs) m6A methylation contributing to pigmentation in sheep skin remains unclear. The purpose of this study was to identify potential lncRNAs and the m6A methylation of lncRNAs associated with pigmentation. Methods: RNA-seq and MeRIP-seq were performed to study the expression of lncRNAs and the m6A methylation of lncRNAs in black and white sheep skin. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the consistency with the RNA-seq and MeRIP-seq data. Results: We identified 168 differentially expressed lncRNAs between the two sheep skin colors. The differentially expressed lncRNAs enriched in the pathway of ECM-receptor interaction, Rap1 signaling pathway, and Non-homologous end-joining may play essential roles in pigmentation. We identified 577 m6A peaks and 617 m6A peaks in black and white sheep skin, respectively, among which 20 m6A peaks showed significant differences. The enriched motif in sheep skin was "GGACU", which aligned with the consensus motif "RRACH" (R = A or G, H = A, C or U). Differently methylated lncRNAs enriched in PI3K-Akt signaling pathway and Wnt signaling pathway might participate in skin pigmentation. ENSOARG00020015168 was the unique lncRNA with high expression and methylation (Hyper-Up) in black sheep shin. A lncRNA-mRNA network was constructed, with pigmentation-related genes, such as PSEN2, CCND3, COL2A1, and ERCC3. Conclusion: The m6A modifications of lncRNAs in black and white colored sheep skin were analyzed comprehensively, providing new candidates for the regulation of pigmentation.

Transformation of an Alkalin Protease Overproducer, Vibrio metschnikovii Strain RH530, and Improvement of Plasmid Stability by the par Locus

  • Chung, So-Sun;Shin, Yong-Uk;Kim, Hee-Jin;JIn, Chee-Hong;Lee, Hyune-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.222-228
    • /
    • 2001
  • Vibrio metschnikovii strain RH530 is a non-pathogenic, industrially-important alkaline protease producer which has been isolated from wastewater. In this paper, we report on the transformation of this strain by using the method of electroporation. A field strength of $7.5\;kVcm^{-1}$ and $25\;{\mu}F$, and using a 0.2-cm cuvette, appeared to be the optimal conditions for electroporation of the cells with the recombinant pSBCm plasmid carrying the vapK alkaline protease gene and the ColE1 replicon. Cells were subjected to osmotic shock in order to remove extracelluar DNase, and adding 200 mM of sucrose to electroporation buffer cells showed an increased transformation efficiency. Maximum efficiency of transformation was obtained at an early exponential growth phase. Using all of the conditions mentioned above, we routinely obtained a transformation efficiency of more than $10^4{({\mu}g\;plasmid\;DNA)}^{-1}$. The stability of the plasmid pSBCm in V. metschnikovii RH530 was 25% after 18h of growth (27 generations) in the medium without antibiotic selection. The insertion of the par locus to the pSBCm increased the stability of the plasmid up to 42% without selective pressure. The increase in plasmid stability was accompanied by the increase in the productivity of alkaline protease in the recombinant V. metschnikovii strain RH530. Determining optimal conditions for the transformation of the industrially-important, nonpathogenic Vibrio strain, and the improvement of plasmid stability by introducing the par locus into the high copy number plasmid vector, will allow the development of procedures involved in the genetic manipulation of this strain, particularly for its use in the production of industrial enzymes such as alkaline protease.

  • PDF

Low-Molecular-Weight Collagen Peptide Ameliorates Osteoarthritis Progression through Promoting Extracellular Matrix Synthesis by Chondrocytes in a Rabbit Anterior Cruciate Ligament Transection Model

  • Lee, Mun-Hoe;Kim, Hyeong-Min;Chung, Hee-Chul;Kim, Do-Un;Lee, Jin-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1401-1408
    • /
    • 2021
  • This study examined whether the oral administration of low-molecular-weight collagen peptide (LMCP) containing 3% Gly-Pro-Hyp with >15% tripeptide (Gly-X-Y) content could ameliorate osteoarthritis (OA) progression using a rabbit anterior cruciate ligament transection (ACLT) model of induced OA and chondrocytes isolated from a patient with OA. Oral LMCP administration (100 or 200 mg/kg/day) for 12 weeks ameliorated cartilage damage and reduced the loss of proteoglycan compared to the findings in the ACLT control group, resulting in dose-dependent (p < 0.05) improvements of the OARSI score in hematoxylin & eosin (H&E) and Safranin O staining. In micro-computed tomography analysis, LMCP also significantly (p < 0.05) suppressed the deterioration of the microstructure in tibial subchondral bone during OA progression. The elevation of IL-1β and IL-6 concentrations in synovial fluid following OA induction was dose-dependently (p < 0.05) reduced by LMCP treatment. Furthermore, immunohistochemistry illustrated that LMCP significantly (p < 0.05) upregulated type II collagen and downregulated matrix metalloproteinase-13 in cartilage tissue. Consistent with the in vivo results, LMCP significantly (p < 0.05) increased the mRNA expression of COL2A1 and ACAN in chondrocytes isolated from a patient with OA regardless of the conditions for IL-1β induction. These findings suggest that LMCP has potential as a therapeutic treatment for OA that stimulates cartilage regeneration.

Physico-Chemical Properties and Antimicrobial Activity of Pyocyanine Produced by Pseudomonase aeruginosa KLP-2 (Pseudomonas aeruginosa KLP-2가 생산한 Pyocyanine의 항균활성 및 생리화학적 성상)

  • 박은희;이상준;차인호
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.483-488
    • /
    • 2001
  • The antimicrobial substance produced by Pseudomonas aeruginosa KLP-2 strain was purified and identified. The substance was identified as a pyocyanine by the fast atom bombardment mass(FAB-MS). In physic-chemical properties, the pyocyanine was dark blue needles, and was soluble in various organic solvents such as chlorogorm, methanol, ethanol and ethyl acetae. The pyocyanine possessed a ultraviolet absorbance spectrum in methanol, 0.1 M HCl, and chlorogorm. The maximum absorption peak of the pyocyanine showed at 318 mm in methanol. The molecular formula of the pyocyanine was determined to the $C_{13}$ H$_{10}$ N$_{2}$O and protonate molecular ion species (M+H)$^{+}$ was observed at m/z 211 by FAB-MS. The pyocyanine showed antimicrobial against Bacillus cereus, Bacillus subtilis, Micrococcus luteus, Rodococcus equi, Staphylococcus aureus, Streptococcus faecalis, E. col, Legionella pneumophila, Shigella flexneri Shigella boydii, shgella sonnei, NAG Vibrio cholerae, Vibrio parahaemolyticus, Vibro vulnificus, Yersinia enterocolitica, and Saccharomyces cerevisiae. However, Salmonella spp. Shigela dysenteriae, 3 strains of Pseudomonas aeruginosa, Klebsiela pneumoniae, and Aspergillus niger were resistant to the pyocyanine. The pyocyanine showed the highest antimicrobial activity aganist Legionella pneumophila based on the size of inhibition zone by the disk contained 0.5 $\mu\textrm{g}$ of the pyocyanine.e.

  • PDF