• 제목/요약/키워드: gyro

검색결과 634건 처리시간 0.025초

동작분석기법을 활용한 골프코칭시스템 개발 (A Development of Golf Coaching using Human Motion Analysis)

  • 임석진
    • 대한안전경영과학회지
    • /
    • 제15권2호
    • /
    • pp.55-61
    • /
    • 2013
  • For years, many studies have mainly been investigated in a complicated human motion analysis. Recently, many motion analysis equipments have been studied and developed. Therefore, the more complex human movement analyses are possible, we have enabled us to perform more and more complicated human movement analyses. A Three-dimensional(3D) motion analysis on of the several methods is a useful tool for analyzing the human motion analysis. The purpose of this study was to develop the 3D human motion analysis using a kalman filter algorithm and a gyro sensor. The algorithm and sensor were used to human motion analysis with high-speed motion capture. In this study, the developed system will be adapted to facilitate golf swing analysis. Using the developed system, golfers and coaches who do not have advanced biomechanical knowledge can easily be used to their golf swing analysis. Future study is necessary for more practical and efficient area such as other sports industries, 3D game industries, rehabilitation training, etc..

Imperfection Parameter Observer and Drift Compensation Controller Design of Hemispherical Resonator Gyros

  • Pi, Jaehwan;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.379-386
    • /
    • 2013
  • The hemispherical resonator gyroscope is a type of vibratory gyroscope, which can measure angle or angular rate, based on its operating mode. This paper deals with the case when the hemispherical resonator gyroscope is operated in angle measurement mode. In angle measurement mode, the resonator pattern angle precesses, with respect to the external rotation input, by the principle of the Coriolis effect, so that the external rotation can be estimated, by measuring the amount of precession angle. However, this pattern angle drifts, due to the manufacturing error of the resonator. Since the drift effect causes degradation of the angle estimation performance of the resonator, the corresponding drift compensation control should be performed, to enhance the estimation performance. In this paper, a mathematical model of the hemispherical resonator gyro is first introduced. By using the mathematical model, a nonlinear observer for imperfection parameter estimation, and the corresponding compensation controller are designed to operate hemispherical resonator gyros, as angle measurement sensors.

Development of a Musculoskeletal Load Measuring Device for Construction Workers Based on Accelerometers and Gyro Sensors

  • Kim, Kyoon-Tai
    • 한국건축시공학회지
    • /
    • 제11권6호
    • /
    • pp.618-626
    • /
    • 2011
  • The characteristics of construction work cause excessive strain on specific body parts of the construction craft workers. However, there are few tools to mane an accurate measurement of the load on the musculoskeletal system, and the musculoskeletal disorders (MSDs) experienced by the workers have not been properly understood. So, there is an urgent need for development of a tool to measure the load on the musculoskeletal system. Therefore, this research aims to develop a musculoskeletal load measuring device for construction workers. In order to eliminate the noise and errors, an accelerometer, gyro sensors and the Kalman Filter are used in the device developed in this research.

보행항법장치의 모델링 및 오차 보정 (Modeling & Error Compensation of Walking Navigation System)

  • 조성윤;박찬국
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권6호
    • /
    • pp.221-227
    • /
    • 2002
  • In this paper, the system model for the compensation of the low-cost personal navigation system is derived and the error compensation method using GPS is also proposed. WNS(Walking Navigation System) is a kind of personal navigation system using the number of a walk, stride and azimuth. Because the accuracy of these variables determines the navigation performance, computational methods have been investigated. The step is detected using the walking patterns, stride is determined by neural network and azimuth is calculated with gyro output. The neural network filters off unnecessary motions. However, the error compensation method is needed, because the error of navigation information increases with time. In this paper, the accumulated error due to the step detection error, stride error and gyro bias is compensated by the integrating with GPS. Loosely coupled Kalman filter is used for the integration of WNS and GPS. It is shown by simulation that the error is bounded even though GPS signal is blocked.

Polyurethane Elastomer의 합성 및 특성 (Synthesis and Characterization of Polyurethane Elastomer)

  • 정부영;천정미;천제환;목동엽;이학명
    • 접착 및 계면
    • /
    • 제10권4호
    • /
    • pp.169-173
    • /
    • 2009
  • 본 연구에서는 폴리우레탄 엘라스토머 합성 시 사용되는 폴리올, 사슬 연장제, 이소시아네이트에 따른 물성 변화를 알아보았다. 폴리우레탄 엘라스토머 합성시 poly(tetramethylene) glycol을 사용하였을 경우가 인라인 스케이트 휠의 요구물성을 만족하였다. 사슬 연장제의 함량이 증가함에 따라 인장강도와 경도는 증가하였으나, 신율은 감소하는 경향을 나타내었다. 또한 방향족 이소시아네이트의 종류에 따른 평가 결과 bulky한 구조보다는 상대적으로 유연한 구조를 가지고 있는 이소시아네이트가 우수한 물성을 나타내었다.

  • PDF

주행조건 식별을 이용한 로봇청소기의 진행각 추정을 위한 향상된 필터설계 (Improved Yaw-angle Estimation Filter as a Function of the Actual Maneuvers for a Cleaning Robot)

  • 조윤희;이상철;홍성경
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.470-476
    • /
    • 2016
  • This paper proposes a practical algorithm for the reduction of measurement errors due to drift in a micro-electromechanical system (MEMS) gyros that are used for a mobile robot. Any drift in a MEMS gyro will cause an unbounded growth of errors in the estimation of heading, which makes it nearly useless in applications that require high accuracy over a long operating time. In proposed method, maneuvers of a cleaning robot are observed through encoders' measurement process and a decision to correct bias drift will be made if necessary. The method used in this paper is called the "heading estimation filter". To evaluate the accuracy of the proposed method, a comparison was made between the estimation of the heading of the cleaning robot and one from a motion capture system.

링레이저 자이로 관성항법시스템의 편향 오차 해석 (Flexure Error Analysis of RLG based INS)

  • 김광진;유명종;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.608-613
    • /
    • 2006
  • Any input acceleration that bends RLG dithering axis causes flexure error, which is a source of the noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

2개의 가변속 제어모멘트자이로를 이용한 인공위성의 자세제어 (Attitude Control of Spacecraft by Two Variable-Speed Control Moment Gyros)

  • 진재현
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1027-1033
    • /
    • 2015
  • For the attitude control of spacecraft, two variable-speed control moment gyros are proposed as main actuators in the article. Since a variable-speed control moment gyro (VSCMG) makes two control torques (gyroscopic torque and reaction torque), two VSCMGs are sufficient for controlling 3-axes attitude. Additionally, there are no singular conditions for two non-parallel VSCMGs. Since gyroscopic torque is usually much greater than reaction torque, the control performances of approximately 3 axes may not be the same. However, several missions can be accomplished by controlling two axes. For such missions, a selective axes control method is proposed. The method selects two axes for a certain task and controls the attitude of the selected axes. For the remaining axis, angular speed is controlled for stabilization. A hardware-in-the-loop simulation has been used to test VSCMG modules and to verify the proposed method. Two VSCMGs can be alternative actuators for small satellites.

디지털 전자콤파스에 대한 연구 (A Study the Digital Electronic Compass)

  • 윤재준;최조천
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.245-251
    • /
    • 2005
  • 선박의 자동조타기에는 반드시 방위정보가 필요하며, 방위정보를 제공하는 장비로는 자이로콤파스, 지자기 콤파스 및 GPS 콤파스가 있다. 자이로콤파스는 안정된 동작을 하지만 고가형이므로 주로 대형선박에서 사용되고 있으며, 중소형 선박에서는 저가형의 지자기콤파스 및 GPS 콤파스가 사용되고 있다. 본 연구에서는 지자기콤파스와 GPS 콤파스에서 각각의 단점을 보완하는 방식으로 안정된 방위정보를 제공하는 병행알고리즘의 전자콤파스를 구현하였다.

  • PDF

가속도계와 자이로스코프를 이용한 평면의 경사각 추정 (Tilt Angle Estimation of Plane with a Pair of Accelerometers and a Gyroscope)

  • 강민식
    • 한국소음진동공학회논문집
    • /
    • 제23권11호
    • /
    • pp.966-972
    • /
    • 2013
  • Measurement or estimation of tilt angle is necessary for balancing robot such as Segway which is considered as a next generation transportation vehicle. However, it requires high-cost accurate sensors to hold balancing during stationary and moving situations. In this paper, a tilt angle estimation of a plane rotating in a vertical plane using low-cost sensors. Estimation using a set of 2-axis orthogonal accelerometers along with an inaccurate rate gyro has been considered. Feasibility and performance of the proposed technique has been verified through some experimental results.