• Title/Summary/Keyword: gwangdong dam

Search Result 4, Processing Time 0.019 seconds

Adaptive Management of Water Supply Systems to Deal with Climate Changes: A Gwangdong Dam Case Study (기후 변화 대응을 위한 상수도 시설 적응형 관리의 필요성: 2008-2009 광동댐 취수 제한 사례 연구)

  • Lee, Sangeun;Choi, Dongjin;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.583-598
    • /
    • 2009
  • From the engineering standpoint, this study puts a special emphasis on application of adaptive management. To do this, we analyze the recent issue about water scarcity of the Gwangdong dam. Using the system dynamics model, we defined the system including water balance in the dam, dam manager's operation rules, regional water supply and local water distribution, and customer damage. It was expected that the model is useful to explain the real case, and also water scarcity of Gwangdong led to total damage of about 2.56 billion won, mainly to customers in the Taebaeck city. Two adaptive management options (i.e., optimal allocation of limited water resources, and early control of dam storage) were applied to the model in order to examine whether adaptive management is effective to mitigate the damage, it is concluded that the case study could largely reduce or entirely avoid the damage with adaptive engineering options.

Snow Melting Simulation of Gwangdong Dam Basin in the Spring Season Using Developed K-DRUM Model (K-DRUM 모형의 개선을 통한 광동댐 유역의 봄철 융설 모의)

  • Kim, Hyeon Sik;Kang, Shin Uk;Hwang, Phyil Sun;Hur, Young Teck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.355-361
    • /
    • 2012
  • Gwangdong Dam Watershed is affected by the increased discharge caused by the melting snow in the spring season. Therefore, simulation results obtained using hydrologic models have generally been inaccurate in relation to discharge without snow pack and melt modules. In this research, a grid based distributed rainfall runoff model (K-DRUM) was developed using a snow pack and melt module, and has been applied in the Gwangdong Dam Watershed to simulate the discharge for a four year period. A previous version of K-DRUM, which does not include a snow pack or melt module, was used to calculate the discharge in order to compare the snow melt effect. The simulation period lasted about 7 months from October of the previous year to April of this year using hourly precipitation and weather observed data. To evaluate the model performance, NSE, PBIAS and RSR statistics techniques were applied using the simulation results of the discharge. From the results of reliability evaluation, the K-DRUM model, which uses a snow pack and melt module, had a good applicability for the runoff simulation considering the snow melt effect in the spring.

Understanding Uncertainties in Projecting Water Demand and Effects of Climate Change for Adaptive Management of Water Supply Risk of the Water Resources System (수자원 시설 물공급 리스크의 적응형 관리를 위한 물수요 및 기후변화 영향의 불확실성 검토)

  • Lee, Sang-Eun;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.293-305
    • /
    • 2011
  • A special concern is paid to the risks with which small-sized water resources systems are confronted in supplying water in the far future. Taking the Gwangdong dam reservoir as a case study, the authors seek to understand demand-side and supply-side disturbances of a reservoir, which, respectively, corresponds to effects of water demand changes on the intake amount and those of climate changes on the inflow amount. In result, it is demonstrated that both disturbances in the next 50 years are almost unpredictable. Yet the projection ranges, thought of as relatively reliable information that models offer, reveal that severity and period of water shortage is very likely to change. It is therefore concluded that water resources management requires more rigorous approaches to overcoming high uncertainties. The methods and models for projecting those disturbances are selected, based on practicality and applicability. Nevertheless, they show a large usefulness, especially in dealing with data shortage and reducing the needs for expensive modeling resources.

A Root Cause Analysis for Drought in Taeback City, Kangwon-do in 2008 (강원도 태백지역 2008년 가뭄의 원인분석 연구)

  • Kim, Joo-Hwan;Choi, Gye-Woon;Park, Sang-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.351-359
    • /
    • 2010
  • Recently, there have been flood damages due to the climate change and the flash flood continuously in Korea and there are several flood disaster mitigation plans that are normally most of management plan for water related disasters even though drought disasters are as important as flood disasters. In this study, it is underlined that the research on solution of water shortness due to the drought disasters is currently required since the frequency of drought damage is not very many but continuously increasing. There was big drought damage in TaeBaek City of Kangwon province due to the serious lack of water during autumn, 2008 to spring, 2009. This study therefore analyses the characteristics of hydrometeorological conditions by rainfall frequency analysis and the operations of Gwangdong dam that is a source of multi-regional water supply by analysing water demand. As results of study, there was a drought with 20 years returning period which is not really available to fill the reservoir as usual and which could only filled 52% of reservoir. The rainfall during the dry season was less than normal, however, the water demand from the TaeBaek City was higher than normal. As researching several reasons of water shortness including the reasons described above, this study might be useful for drought mitigation plan.