• 제목/요약/키워드: gut metabolism

검색결과 99건 처리시간 0.024초

Bidirectional Interactions between Green Tea (GT) Polyphenols and Human Gut Bacteria

  • Se Rin Choi;Hyunji Lee;Digar Singh;Donghyun Cho;Jin-Oh Chung;Jong-Hwa Roh;Wan-Gi Kim;Choong Hwan Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1317-1328
    • /
    • 2023
  • Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols. UHPLC-LTQ-Orbitrap-MS/MS analysis of the culture broth extracts unravel that genera Adlercreutzia, Eggerthella and Lactiplantibacillus plantarum KACC11451 promoted C-ring opening reaction in GT catechins. In addition, L. plantarum also hydrolyzed catechin galloyl esters to produce gallic acid and pyrogallol, and also converted flavonoid glycosides to their aglycone derivatives. Biotransformation of GT polyphenols into derivative compounds enhanced their antioxidant bioactivities in culture broth extracts. Considering the effects of GT polyphenols on specific growth rates of gut bacteria, we noted that GT polyphenols and their derivate compounds inhibited most species in phylum Actinobacteria, Bacteroides, and Firmicutes except genus Lactobacillus. The present study delineates the likely mechanisms involved in the metabolism and bioavailability of GT polyphenols upon exposure to gut microbiota. Further, widening this workflow to understand the metabolism of various other dietary polyphenols can unravel their biotransformation mechanisms and associated functions in human GIT.

Gut microbiota-mediated pharmacokinetics of ginseng saponins

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.255-263
    • /
    • 2018
  • Orally administered ginsengs come in contact with the gut microbiota, and their hydrophilic constituents, such as ginsenosides, are metabolized to hydrophobic compounds by gastric juice and gut microbiota: protopanxadiol-type ginsenosides are mainly transformed into compound K and ginsenoside Rh2; protopanaxatriol-type ginsenosides to ginsenoside Rh1 and protopanaxatriol, and ocotillol-type ginsenosides to ocotillol. Although this metabolizing activity varies between individuals, the metabolism of ginsenosides to compound K by gut microbiota in individuals treated with ginseng is proportional to the area under the blood concentration curve for compound K in their blood samples. These metabolites such as compound K exhibit potent pharmacological effects, such as antitumor, anti-inflammatory, antidiabetic, antiallergic, and neuroprotective effects compared with the parent ginsenosides, such as Rb1, Rb2, and Re. Therefore, to monitor the potent pharmacological effects of ginseng, a novel probiotic fermentation technology has been developed to produce absorbable and bioactive metabolites. Based on these findings, it is concluded that gut microbiota play an important role in the pharmacological action of orally administered ginseng, and probiotics that can replace gut microbiota can be used in the development of beneficial and bioactive ginsengs.

Effect of Lactobacillus rhamnosus hsryfm 1301 on the Gut Microbiota and Lipid Metabolism in Rats Fed a High-Fat Diet

  • Chen, Dawei;Yang, Zhenquan;Chen, Xia;Huang, Yujun;Yin, Boxing;Guo, Feixiang;Zhao, Haiqing;Huang, Jiadi;Wu, Yun;Gu, Ruixia
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.687-695
    • /
    • 2015
  • Accumulating evidence indicates that lactic acid bacteria could improve host physiology and lipid metabolism. To investigate the effect of the gut microbiota on host lipid metabolism, a hyperlipidemic rat model was established by feeding rats a high-fat diet for 28 days, and the gut microbiota of the rats was analyzed using real-time PCR before and after administration of Lactobacillus rhamnosus hsryfm 1301 and its fermented milk for 28 days. The findings showed that the Lactobacillus spp., Bifidobacterium spp., Bacteroides spp., and Enterococcus spp. content in the hyperlipidemic rats gut was increased significantly (p < 0.05), while the Clostridium leptum and Enterobacter spp. content was decreased significantly after intervening with L. rhamnosus hrsyfm 1301 and its fermented milk for 28 days (p < 0.05). Furthermore, the lipid levels of the serum and the liver were decreased significantly (p < 0.05) and the fecal water content was increased significantly (p < 0.05) in the hyperlipidemic rats after the intervention, and hepatocyte fatty degeneration of liver tissues was also prevented. A positive correlation was observed between the Clostridium leptum content and the level of serum cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein, and a negative correlation was observed between the Enterobacter spp. content and the Lactobacillus spp. and Bifidobacterium spp. content in the hyperlipidemic rats gut. These results suggest that the gut microbiota and lipid metabolism of hyperlipidemic rats could be improved by supplementation with L. rhamnosus hsryfm 1301 and its fermented milk.

The effects of plant extracts on lipid metabolism of chickens - A review

  • Xuedong Ding;Ilias Giannenas;Ioannis Skoufos;Jing Wang;Weiyun Zhu
    • Animal Bioscience
    • /
    • 제36권5호
    • /
    • pp.679-691
    • /
    • 2023
  • The fat deposition is an important factor affecting chicken meat quality, which is closely related to lipid metabolism of chickens. Therefore, it is important to regulate the lipid metabolism of chickens to improve the chicken meat quality. Plant extracts have special regulatory effects on animal's growth and health and have been widely used in chicken breeding. Some plant extracts have been reported to have functions of changing the fatty acid composition, reducing abdominal fat percentage, and enhancing the intramuscular fat content of chickens by improving the antioxidant capacity, regulating the expression of genes, enzymes, and signaling pathways related to lipid metabolism, modulating intestinal microbiota, affecting hormones level, and regulating DNA methylation. This paper reviewed the application and mechanism of plant extracts on regulating lipid metabolism of chickens to provide a reference for the further application of plant extracts in chicken breeding.

Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota

  • Zhang, Xiaoyan;Chen, Sha;Duan, Feipeng;Liu, An;Li, Shaojing;Zhong, Wen;Sheng, Wei;Chen, Jun;Xu, Jiang;Xiao, Shuiming
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.334-343
    • /
    • 2021
  • Background: Gut microbiota mainly function in the biotransformation of primary ginsenosides into bioactive metabolites. Herein, we investigated the effects of three prebiotic fibers by targeting gut microbiota on the metabolism of ginsenoside Rb1 in vivo. Methods: Sprague Dawley rats were administered with ginsenoside Rb1 after a two-week prebiotic intervention of fructooligosaccharide, galactooligosaccharide, and fibersol-2, respectively. Pharmacokinetic analysis of ginsenoside Rb1 and its metabolites was performed, whilst the microbial composition and metabolic function of gut microbiota were examined by 16S rRNA gene amplicon and metagenomic shotgun sequencing. Results: The results showed that peak plasma concentration and area under concentration time curve of ginsenoside Rb1 and its intermediate metabolites, ginsenoside Rd, F2, and compound K (CK), in the prebiotic intervention groups were increased at various degrees compared with those in the control group. Gut microbiota dramatically responded to the prebiotic treatment at both taxonomical and functional levels. The abundance of Prevotella, which possesses potential function to hydrolyze ginsenoside Rb1 into CK, was significantly elevated in the three prebiotic groups (P < 0.05). The gut metagenomic analysis also revealed the functional gene enrichment for terpenoid/polyketide metabolism, glycolysis, gluconeogenesis, propanoate metabolism, etc. Conclusion: These findings imply that prebiotics may selectively promote the proliferation of certain bacterial stains with glycoside hydrolysis capacity, thereby, subsequently improving the biotransformation and bioavailability of primary ginsenosides in vivo.

Virechana karma (therapeutic purgation) in the restoration of gut microbiota concerning Amavata (RA): A scientific exposition

  • Godbole, Amrit;Sweta, Sweta;Abhinav, Abhinav;Singh, O.P.
    • 셀메드
    • /
    • 제11권1호
    • /
    • pp.1.1-1.4
    • /
    • 2021
  • Background: Amavata is a disease that occurs as a result of the error of metabolism. Poor dietary habits and faulty Dincharya (daily regimen) and ritucharya (seasonal regimen) leading to deranged metabolism and Agni (metabolic fire) which results in the formation of Ama(undigested product of metabolism). When Amaconceals with Vata(subtle energy associated with movement) and circulates in the body under the influence of Vyana Vayu (omnipresent air)it clogs the srotasas (microchannels) and initiates the inflammatory cascade. Amavata is commonly correlated with rheumatoid arthritis (RA) while other forms of auto-immune disorders can also be included in Amavata.Dysbiosis of the gut microbiota (GM) has been connected to the onset of diverse autoimmune diseases. In this study, it was hypothesized that Panchakarma (bio-purificatory methods) based intervention such as Virechana Karma (therapeutic purgation) may influence microbiota. Materials and Methods: Various Ayurvedic literature were reviewed for the etiopathogenesis of Amavata. Different databases were searched with research papers related to Gut Dysbiosis and autoimmunity and management of RA. A connecting link between Intestinal Dysbiosis with the autoimmune mechanisms was established and it was also found that the bowel cleansing introduced a change to the GM. Conclusion: It was concluded that Virechana karma is effective in gut flora Dysbiosis. This study aims to correlate the ancient Ayurvedic principles related to Agni Bala(metabolic energy) and biopurificatory treatment modalities like Virechana karma (therapeutic purgation)with the modern concept of gut microbiota and its role in the pathogenesis of various autoimmune disorders such as rheumatoid arthritis. The article creates an understanding about principles of Ayurveda and its rationality in today's scientific world and thereby opens newer vistas of research in therapeutics from Ayurveda, which may be helpful in the management of various immune-mediated Diseases through Ayurveda.

The Inhibitory Effect of Gut Microbiota and Its Metabolites on Colorectal Cancer

  • Chen, Chao;Li, Huajun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1607-1613
    • /
    • 2020
  • Colorectal cancer (CRC) is regarded as one of the most common and deadly forms of cancer. Gut microbiota is vital to retain and promote several functions of intestinal. Although previous researches have shown that some gut microbiota have the abilities to inhibit tumorigenesis and prevent cancer from progressing, they have not yet clearly identified associative mechanisms. This review not only concentrates on the antitumor effects of metabolites produced by gut microbiota, for example, SCFA, ferrichrome, urolithins, equol and conjugated linoleic acids, but also the molecules which constituted the bacterial cell wall have the antitumor effect in the host, including lipopolysaccharide, lipoteichoic acid, β-glucans and peptidoglycan. The aim of our review is to develop a possible therapeutic method, which use the products of gut microbiota metabolism or gut microbiota constituents to help treat or prevent colorectal cancer.

비만에서 장내 미생물 균총의 역할과 발효 한양의 활용 (The Role of Gut Microbiota in Obesity and Utilization of Fermented Herbal Extracts)

  • 박정현;김호준;이명종
    • 한방비만학회지
    • /
    • 제9권1호
    • /
    • pp.1-14
    • /
    • 2009
  • Complex microbial communities play an important role in the human health and co-evolved with human in the form of symbiosis. Many literatures provide new evidences that the increased prevalence of obesity cannot be attributed solely to changes in the human genome, nutritional habits, or reduction of physical activity in our daily lives. The intestinal flora was recently proposed as an environmental factor responsible for the control of body weight and energy metabolism. A number of studies suggest that the modulation of gut microbiota affects host metabolism and has an impact on energy storage and demonstrated a role for the gut microbiota in weight gain, fat increase, and insulin resistance. Variations in microbiota composition are found in obese humans and mice and the microbiota from an obese mouse confers an obese phenotype when transferred to an axenic mouse. As well, the gut microbial flora plays a role in converting nutrients into calories. Specific strategies for modifying gut microbiota may be a useful means to treat or prevent obesity. Dietary modulations of gut microbiota with a view to increasing bifidobacteria have demonstrated to reduce endotoxemia and improve metabolic diseases such as obesity. The fermentation of medicinal herbs is intended to exert a favorable influence on digestability, bioavailability and pharmacological activity of herbal extract. Therefore we also expect that the fermented herbal extracts may open up a new area to treat obesity through modulating gut microbiota.

  • PDF

Co-cultured methanogen improved the metabolism in the hydrogenosome of anaerobic fungus as revealed by gas chromatography-mass spectrometry analysis

  • Li, Yuqi;Sun, Meizhou;Li, Yuanfei;Cheng, Yanfen;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권12호
    • /
    • pp.1948-1956
    • /
    • 2020
  • Objective: The purpose of this study was to reveal the metabolic shift in the fungus cocultured with the methanogen (Methanobrevibacter thaueri). Methods: Gas chromatography-mass spectrometry was used to investigate the metabolites in anaerobic fungal (Pecoramyces sp. F1) cells and the supernatant. Results: A total of 104 and 102 metabolites were detected in the fungal cells and the supernatant, respectively. The partial least squares-discriminant analysis showed that the metabolite profiles in both the fungal cell and the supernatant were distinctly shifted when co-cultured with methanogen. Statistically, 16 and 30 metabolites were significantly (p<0.05) affected in the fungal cell and the supernatant, respectively by the co-cultured methanogen. Metabolic pathway analysis showed that co-culturing with methanogen reduced the production of lactate from pyruvate in the cytosol and increased metabolism in the hydrogenosomes of the anaerobic fungus. Citrate was accumulated in the cytosol of the fungus co-cultured with the methanogen. Conclusion: The co-culture of the anaerobic fungus and the methanogen is a good model for studying the microbial interaction between H2-producing and H2-utilizing microorganisms. However, metabolism in hydrogenosome needs to be further studied to gain better insight in the hydrogen transfer among microorganisms.

Anticancer Effects of Gut Microbiota-Derived Short-Chain Fatty Acids in Cancers

  • Mi-Young Son;Hyun-Soo Cho
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권7호
    • /
    • pp.849-856
    • /
    • 2023
  • Short-chain fatty acids (SCFAs), such as butyrate, propionate, and acetate produced by the gut microbiota have been implicated in physiological responses (defense mechanisms, immune responses, and cell metabolism) in the human body. In several types of cancers, SCFAs, especially butyrate, suppress tumor growth and cancer cell metastasis via the regulation of the cell cycle, autophagy, cancer-related signaling pathways, and cancer cell metabolism. In addition, combination treatment with SCFAs and anticancer drugs exhibits synergistic effects, increasing anticancer treatment efficiency and attenuating anticancer drug resistance. Therefore, in this review, we point out the importance of SCFAs and the mechanisms underlying their effects in cancer treatment and suggest using SCFA-producing microbes and SCFAs to increase therapeutic efficacy in several types of cancers.