• 제목/요약/키워드: gust effect factors

검색결과 7건 처리시간 0.019초

Gust durations, gust factors and gust response factors in wind codes and standards

  • Holmes, John D.;Allsop, Andrew C.;Ginger, John D.
    • Wind and Structures
    • /
    • 제19권3호
    • /
    • pp.339-352
    • /
    • 2014
  • This paper discusses the appropriate duration for basic gust wind speeds in wind loading codes and standards, and in wind engineering generally. Although various proposed definitions are discussed, the 'moving average' gust duration has been widely accepted internationally. The commonly-specified gust duration of 3-seconds, however, is shown to have a significant effect on the high-frequency end of the spectrum of turbulence, and may not be ideally suited for wind engineering purposes. The effective gust durations measured by commonly-used anemometer types are discussed; these are typically considerably shorter than the 'standard' duration of 3 seconds. Using stationary random process theory, the paper gives expected peak factors, $g_u$, as a function of the non-dimensional parameter ($T/{\tau}$), where T is the sample, or reference, time, and ${\tau}$ is the gust duration, and a non-dimensional mean wind speed, $\bar{U}.T/L_u$, where $\bar{U}$ is a mean wind speed, and $L_u$ is the integral length scale of turbulence. The commonly-used Durst relationship, relating gusts of various durations, is shown to correspond to a particular value of turbulence intensity $I_u$, of 16.5%, and is therefore applicable to particular terrain and height situations, and hence should not be applied universally. The effective frontal areas associated with peak gusts of various durations are discussed; this indicates that a gust of 3 seconds has an equivalent frontal area equal to that of a tall building. Finally a generalized gust response factor format, accounting for fluctuating and resonant along-wind loading of structures, applicable to any code is presented.

Typhoon damage analysis of transmission towers in mountainous regions of Kyushu, Japan

  • Tomokiyo, Eriko;Maeda, Junji;Ishida, Nobuyuki;Imamura, Yoshito
    • Wind and Structures
    • /
    • 제7권5호
    • /
    • pp.345-357
    • /
    • 2004
  • In the 1990s, four strong typhoons hit the Kyushu area of Japan and inflicted severe damage on power transmission facilities, houses, and so on. Maximum gust speeds exceeding 60 m/s were recorded in central Kyushu. Although the wind speeds were very high, the gust factors were over 2.0. No meteorological stations are located in mountainous areas, creating a deficiency of meteorological station data in the area where the towers were damaged. Since 1995 the authors have operated a network for wind measurement, NeWMeK, that measures wind speed and direction, covering these mountainous areas, segmenting the Kyushu area into high density arrays. Maximum gusts exceeding 70 m/s were measured at several NeWMeK sites when Typhoon Bart (1999) approached. The gust factors varied widely in southerly winds. The mean wind speeds increased due to effects of the local terrain, thus further increasing gust speeds.

뇌우 동반 돌풍의 시공간분포 분석 (Spatial and Temporal Analysis of Thunderstorm Wind Gust)

  • 이승수;김준영
    • Spatial Information Research
    • /
    • 제21권4호
    • /
    • pp.1-6
    • /
    • 2013
  • 본 연구는 2002년부터 2009년까지 국내에서 발생한 돌풍에 대한 시계열 및 공간분포를 분석하였다. 태풍 기간 동안에 발생한 돌풍에 대해서는 제외하였으며, 지형에 의한 풍속 할증 효과는 KBC 2005 기준을 적용하여 보정하였다. 분석 결과, 돌풍 발생 빈도는 해안지역을 따라 높은 빈도가 나타났으며, 대상 기간 중 최대 286회의 발생 빈도를 보였다. 본 연구에서는 뇌우에 의한 돌풍과 종관 기상에 의해 발생한 돌풍의 시계열 분포의 비교를 통해 뇌우에 의한 돌풍의 불확실성이 높음을 확인하였다. 또한 누적운량과 뇌우 돌풍의 공간적 상관분석을 통해 두 인자간 높은 상관관계가 있음을 근거로 하여 돌풍에 대한 공간적 위험도를 평가하는데 활용할 수 있음을 제시하였다.

동적거동 관점에서의 돌풍에 대한 고속전철 운행속도 영향 연구 (Analysis of Dynamic Behavior of the High Speed Train by External Force due to the Gust)

  • 박찬경;김영국;최강윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.495-500
    • /
    • 2001
  • The dynamic behavior of high speed train is very important because it should be safe and is satisfied with the ride comfort of passengers. The railway is composed of many suspension components-1st springs, 1st dampers, 2nd springs, 2nd dampers etc- that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes, the track condition and geometry and many environmental factors-rain, snow, wind etc-are affected the dynamic behavior of high speed train. This paper is reviewed the effect of wind(gust) on the dynamic behavior of high speed train. Vampire program is used for this simulation. The result of simulation shows that high speed train should not be operated when the gust speed is beyond 34.5m/sec.

  • PDF

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

Field measurements of wind characteristics over hilly terrain within surface layer

  • He, Y.C.;Chan, P.W.;Li, Q.S.
    • Wind and Structures
    • /
    • 제19권5호
    • /
    • pp.541-563
    • /
    • 2014
  • This paper investigates the topographic effects on wind characteristics over hilly terrain, based on wind data recorded at a number of meteorological stations in or near complex terrain. The multiply data sources allow a more detailed investigation of the flow field than is normally possible. Vertical profiles of mean and turbulent wind components from a Sodar profiler were presented and then modeled as functions of height and wind speed. The correlations between longitudinal and vertical wind components were discussed. The phenomena of flow separation and generation of vortices were observed. The distance-dependence of the topographic effects on gust factors was revealed subsequently. Furthermore, the canyon effect was identified and discussed based on the observations of wind at a saddle point between two mountain peaks. This study aims to further understanding of the characteristics of surface wind over rugged terrain. The presented results are expected to be useful for structural design, prevention of pollutant dispersion, and validation of CFD (computational fluid dynamics) models or techniques over complex terrains.

Experimental research on design wind loads of a large air-cooling structure

  • Yazhou, Xu;Qianqian, Ren;Guoliang, Bai;Hongxing, Li
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.215-224
    • /
    • 2019
  • Because of the particularity and complexity of direct air-cooling structures (ACS), wind parameters given in the general load codes are not suitable for the wind-resistant design. In order to investigate the wind loads of ACS, two 1/150 scaled three-span models were designed and fabricated, corresponding to a rigid model and an aero-elastic model, and wind tunnel tests were then carried out. The model used for testing the wind pressure distribution of the ACS was defined as the rigid model in this paper, and the stiffness of which was higher than that of the aero-elastic model. By testing the rigid model, the wind pressure distribution of the ACS model was studied, the shape coefficients of "A" shaped frame and windbreak walls, and the gust factor of the windbreak walls were determined. Through testing the aero-elastic model, the wind-induced dynamic responses of the ACS model was studied, and the wind vibration coefficients of ACS were determined based on the experimental displacement responses. The factors including wind direction angle and rotation of fan were taken into account in this test. The results indicated that the influence of running fans could be ignored in the structural design of ACS, and the wind direction angle had a certain effect on the parameters. Moreover, the shielding effect of windbreak walls induced that wind loads of the "A" shaped frame were all suction. Subsequently, based on the design formula of wind loads in accordance with the Chinese load code, the corresponding parameters were presented as a reference for wind-resistant design and wind load calculation of air-cooling structures.