• Title/Summary/Keyword: gusA

Search Result 228, Processing Time 0.028 seconds

Construction of Binary Vectors for the Rice Transformation Using a Rice Actin Promoter and Replication Origin of pTi12 Isolated from Agrobacterium tumefaciens KU12 (Agrobactrium tumefaciens KU12로부터 분리한 pli12의 Replication Origin과 벼의 Actin 유전자 프로모터를 이용한 벼의 Binary Vector 제조)

  • Sim, Woong-Seop
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.365-371
    • /
    • 1995
  • Binary vectors, pBI-ActR1, pBI-ActF1 and pBSH-ActR1, were constructed using pGA642, the replication origin of pTi12 and the rice actin promoter. The sizes of pBI-ActR1, pBI-ActF1 and pBSH-ActR1 were 12.9 kb, 13.2 kb and 11.95 kb, respectively. These vectors containing a rice actin promoter followed by a GUS structural gene could induce stronly the expression of GUS gene in transformed rice cells. Rice explants from 3-4 day old seedlings after germinatin were cocultured with A. tumefaceins harboring pBI-ActR1, pBI-ActF1 or pBSH-ActR1, and then GUS expression in the explants was assayed. Transformation of rice explants by these binary vectors was tissue-specific, such that the meristematic regions of shoot apex, root and hypocotyl were transformed by these binary vectors.

  • PDF

Assessment of Factors Influencing Agrobacterium Mediated Transformation in Cucumber (Cucumis sativus L)

  • Sureshkumar P.;Selvaraj N.;Ganapathi A.;Kasthurirengan S.;Vasudevan A.;Anbazhagan V. Ramesh
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.225-231
    • /
    • 2005
  • Five day old cotyledon explants of Cucumber (Cucumis sativus L) cv Poinsett 76 were cocultivated with two Agrobacterium strains (EHA105 and LBA 4404) each carrying GUS as the reporter gene and npt-II as the selection marker gene in the T-DNA region of the vector. Transformed shoots were selected at 150 mg/L kanamycin. A two day cocultivation coupled with $20\;{\mu}M$ acetosyringone increased the frequency (8.2 and 15.4 shoots) of GUS expression in the shoots of transformed plant. Among the two Agrobacterium strains, EHA 105 performed better than LBA 4404 in bringing two-fold increase in transformation efficiency (14%) than LBA 4404 (7.4%). PCR analysis was done to confirm the integration of T-DNA into cucumber genome.

GUS Expression Driven by Promoter of AtSAGT1 Gene Encoding a Salicylic Acid Glucosyltransferase 1 in Arabidopsis Plants

  • Sendon, Pamella Marie;Park, Jong-Beum;Park, Soon-Ki;Song, Jong Tae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.83-87
    • /
    • 2013
  • AtSAGT1 encodes a salicylic acid (SA) glucosyltransferase enzyme that catalyzes the formation of SA glucoside and SA glucose ester. Here, the AtSAGT1 gene expression patterns were determined in AtSAGT1 promoter::GUS transgenic Arabidopsis plants. As a result, the factors regulating the induction of AtSAGT1 were identified as pathogen defense response, wound response, exogenous application of SA, and jasmonic acid treatment.

  • PDF

Production of Transgenic Petunia hybrida cv. Rosanpion Using Agrobacterium-mediated Transformation

  • Ko, Jeong-Ae;Kim, Young-Sook;Kim, Myung-Jun;Kim, Hyun-Soon
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • Transgenic Petunia hybrida cv. Rosanpion was produced by Agrobactepium tumefaciens LBA4404 harboring a binary vector pBI 121 containing $\beta$-glucuronidase (gus) and neomycin phosphotransferase (nptII). For genetic transformation, leaf discs were precultured on MS medium supplemented with 0.5 mg/L NAA and 1.0 mg/L BA (MNB) for 2 days and cocultured for 15 mins with A. tumefaciens. For selection of transformant, leaf discs were transferred to fresh MNB containing 50 mg/L kanamycin and 500 mg/L cefotaxime. Eighteen plants were regenerated and four were confirmed by PCR for detection of gus and nptII gene integrated into the nuclear genome of petunia ‘Rosanpion’. Using this transformation system, we expect that transgenic petunia ‘Rosanpion’ incorporating a useful gene can be produced.

  • PDF

Analysis of Upstream Regulatory Region from Populus nigra × P. maximowiczii by Inverse PCR Technique (Inverse PCR 기법(技法)을 이용(利用)한 양황철 DNA의 Regulatory Region의 탐색(探索))

  • Son, Suk Gyu;Hyun, Jung Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.3
    • /
    • pp.334-340
    • /
    • 1998
  • This research was conducted to identify plant regulatory regions by gene tagging method. A promoterless GUS coding sequence was introduced to Populus nigra ${\times}$ P. maximowiczii via Agrobacterium strains(LBA4404/EHA101), and putative transgenic poplars were selected by culturing on medium containing G418($60mg/{\ell}$) and by GUS assay. Among them one positive plant was to amplify the native sequences flanking to the introduced GUS gene in plant genome by inverse PCR method and from this 730 by DNA product was obtained. After subcloning and sequencing, it has 88% homology to the Eucalyptus gunnii CAD(cinnamyl alcohol dehydrogenase) gene. The GUS gene fused with the putative promoter reinserted into poplar leaves by particle bombardment method to test the funtional promoter activity. Upon staining with X-gluc, many blue spots appeared on the leaf segments bombarded by the chimeric gene 2-3 days, thus the isolated DNA fragment contain some possible coding region as well as a putative regulatory sequences of poplar CAD gene.

  • PDF

Impact of Physical, Chemical and Biological Factors on Lily (Lilium longiflorum cv. Georgia) Pollen Growth and GUS Expression Via Agro-infiltration (물리적, 화학적, 생물적 요인에 의한 백합 (Lilium longiflorum cv. Georgia) 화분의 생장 및 Agro-Infiltration을 이용한 GUS 발현)

  • Park, Hee-Sung
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.279-283
    • /
    • 2004
  • To lily (Lilium longflorum cv. Georgia) pollen, impacts by some physical, chemical and biological factors were examined in respects of its growth and transient gene expression via agro-infiltration. Rolling movement in liquid medium or vacuum pressure during Agro-infiltration was regarded as a impact that should be minimized for normal pollen growth. Pollen growth was maintained well in relatively broad range of temperature (19 to 27$^{\circ}C$) or pH (5.0 to 8.0). Chemical factors such as cefotaxime (up to 300mg/L), acetosyringone (up to 800 $\mu$M) and syringealdehyde (up to 800 $\mu$M) did not show any harmful effects but kanamycin severely did even at concentration as low as 25mg/L in some cases. For GUS gene expression, acetosyringone at 200 to 400 $\mu$M slightly improved the efficiency while syringealdehyde did not. Brief agro-infiltration followed by 18 hr of co-incubation of pollen along with Agrobacterium was suggested as a condition basically required for the transient expression system using lily pollen regardless of the presence of acetosyringone.

GUS gene expression and plant regeneration via co-culturing with Agrobacterium in grapevine (Vitis vinifera) (Agrobacterium 공동배양을 이용한 포도 재분화율 향상과 GUS 유전자의 발현)

  • Kim, Se-Hee;Kim, Jeong-Hee;Kim, Ki-Ok;Do, Gyeong-Ran;Shin, Il-Sheob;Cho, Kang-Hee;Hwang, Hae-Seong
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.308-314
    • /
    • 2011
  • Efficient transformation and regeneration methods are a priority for successful application of genetic engineering to vegetative propagated plants such as grape. In this study, methods for Agrobacterium tumefaciens-mediated transformation and plant regeneration of grapevine (Vitis vinifera) were evaluated. Tamnara, Heukgoosul, Heukbosek, Rizamat were co-cultivated with Agrobacterium strains, LBA4404 containing the vector pBI121 carrying with CaMV 35S promoter, GUS gene as reporter gene and resistance to kanamycin as selective agent. Seven percent of the maximum regeneration frequency was obtained from co-cultivated with explants from Rizamat with LBA4404 strain on selection medium with kanamycin. The addition of acetosyringone, 200 ${\mu}m$ in virulence induction step was a key factor for successful GUS reporter gene expression in grapevine transformation. Transgenic plants showed resistance to kanamycin and the GUS positive response in leaf ($T_0$) stem ($T_0$) and petiole ($T_0$).

Bioloistic-mediated Transformation of Cotton (Gossypium hirsutum L.): Embryogenic Calli as Explant

  • Haq Ikram-ul;Asad Shaheen;Zafar Yusuf
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.211-218
    • /
    • 2005
  • Genetic transformation was carried out by using biolistic gun method. The hypocotyl derived embryogenic calli (explants) of cotton (Gossypium hirsutum L.) cv. Cocker-312 were transformed with a recombinant pGreen II plasmid, in which both, bar (selection marker) and GUS (${\beta}$-glucuronidase) reporter genes were incorporated. Explants were arranged on osmoticum-containing medium (0.5M mannitol) 4 hours prior to and 16 hours after bombardment that was resulted into an increase about >80% for GUS stable expression. 3 days after bombardment, GUS assay was performed, which exhibited, $18.36{\pm}1.00$ calli showed blue spots. The transformed embryogenic calli were cultured on selection medium (@ 6 mg/L basta) for 3 months. The putative transgenic plants were developed via selective somatic embryogenesis (@1.50 mg/L basta); maximum $27.58{\pm}1.25$ somatic embryos were obtained while $17.47{\pm}1.00$ embryos developed into plantlets (@ 0.75mg/L basta). In five independent experiments, up to 7.24% transformation efficiency was recorded. The presence of the transgenes was analyzed by using PCR and southern hybridization analysis. The transgenic plants were developed with in 6-7 months, but mostly transformants were abnormal in morphology.

In Vitro Culture and Transformation by Agroinfiltration of Lisianthus (Eustoma russellianus) Pollen (Lisianthus 화분의 기내배양 및 Agroinfiltration에 의한 형질전환)

  • Park Hee Sung
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.1018-1022
    • /
    • 2004
  • Optimized conditions for Agrobacterium-mediated lisianthus pollen transformation were adjusted using various factors such as temperature, pH and sucrose concentration. Pollen tube growth was successfully achieved in a medium (pollen germination medium; PGM) containing $7-15\%$ sucrose with pH in the range of 5.5-7.0 at temperature of $20-27^{\circ}C$. Lisianthus pollen was vacuum-infiltrated with Agrobacterium cell suspension for 20 min, and transformed pollen was confirmed by GUS histochemistry and Southern hybridization following RT-PCR. Transgenic pollen system may be utilized for establishing an area of plant transient expression systems based on the convenient pollen transformation procedure presented in here.

Development of Transient Expression System Using Transformed Seedlings of Brassica napus var. napus (유채유묘의 형질전환을 통한 일시발현시스템의 개발)

  • Shin, Dong-Il;Park, Hee-Sung
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.489-492
    • /
    • 2006
  • For molecular breeding purpose, genetic transformation of Brassica napus cultivars has been extensively performed using Agrobacterium method. B. napus cv. napus, one of major oil crops, can be transformed via Agrobacterium-based method. We demonstrated that Agrobacterium-mediated transformation via vacuum infiltration slightly worked for the seedlings of B. napus cv. napus according to fluorometric GUS enzyme analysis. In contrast, transformation efficiency was highly enhanced when the seedlings, prior to agroinfiltration, were treated with sodium hydrosulfite solution as a chemical wounding agent. GUS gene expression in transformed seedlings that was confirmed by RT-PCR suggests their usefulness for the development of transient expression system.