• Title/Summary/Keyword: guide number on road sign

Search Result 3, Processing Time 0.017 seconds

Older Drivers' Characteristics and Optimal Number of Guide Names on Road Signs (도로표지에 대한 고령운전자의 인간공학적 특성과 적정 안내지명 개수에 대한 연구)

  • Noh, Kwan-sub;Lee, Jong-hak;Kim, Jong-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.235-242
    • /
    • 2008
  • Due to the lack of judgement in an information processing on road sign, older drivers usually are having a hard time driving than young group. Furthermore, according to increasing in aging population, older drivers in Korea have been growing much faster. That means research for older drivers' characteristics and the number of guide name for road sign should be needed. In accordance with suggestions, this study was carried out the number of guide names for road sign with a variety of ages from the twenties to the seventies. For the sake of this study, statistical verification was conducted to confirm a change of speed, a reading time and a misreading rate with Driving Simulator and Electrooculogram tool. As the results of study, change of speed in the age range has shown that the higher the proportion of age, the lower the rate of velocity. Also reading time in the age range with regression analysis found that the higher the proportion of age, the higher the rate of reading time by 0.106sec. Finally, a binary logistic model was used to find the main factors. As the results, 4 number of guide names for road sign have been the best of them for older driver. The result of this study verified the importance of ideal guide numbers on road sign for older driver and proved itself to be an effective method to determine the road safety for the road signs.

3D LIDAR Based Vehicle Localization Using Synthetic Reflectivity Map for Road and Wall in Tunnel

  • Im, Jun-Hyuck;Im, Sung-Hyuck;Song, Jong-Hwa;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.159-166
    • /
    • 2017
  • The position of autonomous driving vehicle is basically acquired through the global positioning system (GPS). However, GPS signals cannot be received in tunnels. Due to this limitation, localization of autonomous driving vehicles can be made through sensors mounted on them. In particular, a 3D Light Detection and Ranging (LIDAR) system is used for longitudinal position error correction. Few feature points and structures that can be used for localization of vehicles are available in tunnels. Since lanes in the road are normally marked by solid line, it cannot be used to recognize a longitudinal position. In addition, only a small number of structures that are separated from the tunnel walls such as sign boards or jet fans are available. Thus, it is necessary to extract usable information from tunnels to recognize a longitudinal position. In this paper, fire hydrants and evacuation guide lights attached at both sides of tunnel walls were used to recognize a longitudinal position. These structures have highly distinctive reflectivity from the surrounding walls, which can be distinguished using LIDAR reflectivity data. Furthermore, reflectivity information of tunnel walls was fused with the road surface reflectivity map to generate a synthetic reflectivity map. When the synthetic reflectivity map was used, localization of vehicles was able through correlation matching with the local maps generated from the current LIDAR data. The experiments were conducted at an expressway including Maseong Tunnel (approximately 1.5 km long). The experiment results showed that the root mean square (RMS) position errors in lateral and longitudinal directions were 0.19 m and 0.35 m, respectively, exhibiting precise localization accuracy.

A Study on the Development and of Establishment Performance Evaluation Criteria of Working Truck Mounted Attenuator (작업차량 장착용 충격흡수장치(TMA) 성능평가기준 수립 및 개발 연구)

  • Joo, Jae-Woong;Jang, Dae-Young;Park, Je-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.185-191
    • /
    • 2012
  • Rear collisions to expressway work trucks result many casualties these days. But, currently, no special measure are being taken except deploying sign trucks behind the working trucks. In the U.S and Europe, trucks with TMA(Truck Mounted Attenuator) are being deployed behind the working truck, which is regarded as the standard method for work area safety, thereby reducing the fatality rates and property damage tremendously. Also, standard for the performance of TMA are established and TMA can be used in the field only when it satisfies the standard. In Korea, neither the standard for nor any guide to the TMA exists. In the situation some manufacturer developed TMA without proper performance evaluation and marketed limited number of TMAs in the field. In the study, NCHRP350, which is the performance standard of expressway safety features of U.S. and materials related to the TMA standard in Europe have been reviewed to establish the Korean performance criteria. Based on the review, and incorporating existing Korean standard for crash cushions, domestic standard for TMA has been proposed and applied in developing Korean TMA and crash tested it to verify the performance. The original design developed was crash tested and modified. The newly proposed design was studied using impact simulation program several times. Modifications were made after each simulation and prototype was built and crash tested as per the newly established TMA performance criteria.