• Title/Summary/Keyword: growth-inhibiting activity

Search Result 300, Processing Time 0.028 seconds

Antifungal Activities of Cinnamaldehyde Derivatives (Cinnamaldehyde 유도체의 항진균 활성)

  • Bang, Kyu-Ho;Min, Byung-Sun;Lee, Young-Ha
    • The Korean Journal of Mycology
    • /
    • v.26 no.4 s.87
    • /
    • pp.525-530
    • /
    • 1998
  • Antifungal activities of cinnamaldehyde derivatives against various fungi were investigated using paper disc diffusion method. Among the derivatives tested, ${\alpha}-chlorocinnamaldehyde$ was stronger than cinnamaldehyde in antifungal activity and was effective in inhibiting the growth of the representative fungi of dermatomycosis with minimum inhibitory concentration of $9.76{\sim}19.5\;{\mu}g/ml$. A comparison of antifungal activity of cinnamaldehyde derivatives revealed that antifungal action of cinnamaldehyde might be related to a basic structure of acrolein.

  • PDF

Studies of the Non-Mevalonate Pathway I. Biosynthesis of Menaquinone-7 in Bacillus subtilis II. Synthesis of Analogs of Fosmidomycin as Potential Antibacterial Agents

  • Kim, Dojung;Phillip J. Proteau
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.158-158
    • /
    • 1998
  • The non-mevalonate pathway is a newly discovered isoprenoid biosynthetic pathway in some bacteria, cyanobacteria, algae and plants. Because isoprenoid metabolites (ubiquinone, menaquinone, undecaprenol) are essential for bacterial growth, this pathway may represent a novel target for antibacterial agents. Antibiotics with a unique mechanism of action are needed to combat the risk of antibiotic resistance that is a current worldwide problem. In order to study this pathway as viable target, it was necessary to verify use of the pathway in our model system, the bacterium Bacillus subtilis. Incubation experiments with [6,6-$^2$H$_2$]-D-glucose and [l-$^2$H$_3$]-deoxy-D-xylulose were conducted to provide labeled menaquinone-7 (MK -7), the most abundant isoprenoid in B. subtilis. $^2$H-NMR analysis of the MK-7 revealed labeling patterns that strongly support utilization of the non-mevalonate pathway. Another approach to study the pathway is by structure activity relationships of proposed inhibitors of the pathway. Fosmidomycin is a phosphonic acid with antibacterial activity known to inhibit isoprenoid biosynthesis in susceptible bacteria and may act by inhibiting the non-mevalonate pathway. Fosmidomycin and an N-methyl analog were synthesized and tested for antibacterial activity. Fosmidomycin was active against Escherichia coli and B. subtilis, while N-formyl-N-methyl-3-amino-propylphosphonic acid was inactive.

  • PDF

Synthesis, spectral, thermal, structural study and theoretical treatment of new complexes of mannich base with Ni(II) and study of cytotoxicity effect on (Hepa-2) cell line and antimicrobial activity

  • Omar H. Al-Obaidi
    • Analytical Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2023
  • The synthesis of the Mannich base as a ligand (L) N-(morpholino (phenyl) methyl) acetamide is the subject of this study. Elemental analyses, FT-IR spectra, UV-vis, 1H-NMR, and magnetic measurements were used to confirm the synthesis of the [Ni(L)2]Cl2 complex, thermal analysis (TG/DTG), atomic absorption, and scanning, and structurally explained as electron microscopy (SEM), and X-ray powder diffraction (XRD) methods. The melting point of the complex and its molar conductivity were also measured. The suggested geometries of the complexes formed have a tetrahedral structure, according to the data acquired using various techniques. Theoretical approaches to the complex formation have been investigated. For molecular mechanics and semi-empirical calculations, the HYPERCHEM6 program had been used. The effect of the novel Ni(II) complex on the cancer cell Hepa-2 (human hepatocellular ademocarcinoma), that is the human laryngeal cancer, was studied. It has been found that these ligand and complex have potent effects on the cancer cell. The antibacterial activity of the free ligand and its complex was evaluated against two kinds of human pathogenic bacteria. The first category is Gram-positive (Staphylococcus aureas, epiderimids), whereas the second group is Gram-negative (Psedamonas aeruginosa, Escherichia coli) (from the diffusion method). Finally, it was discovered that various chemicals had varied growth-inhibiting effects on bacteria.

Antibacterial Activities of Bamboo Sap Against Salmonella Typhimurium and Inhibitory Effects in a Model Food System (죽력의 Salmonella typhimurium 등에 대한 항세균 활성과 Model Food System에서의 생육억제 효과)

  • Chung, Hee-Jong;Ko, Bong-Guk
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.6
    • /
    • pp.709-714
    • /
    • 2005
  • Antibacterial activities of the freeze-dried bamboo sap dissolved into the water or 50% ethanol were determined and antimicrobial activity of bamboo sap dissolved into distilled water was most strong with 15 mm of the diameter of inhibiting clear zone against Listeria monocytogenes ATCC 19114 among gram positive bacteria tested, but it did not inhibit Bacillus subtilis ATCC 6633 at all, and the sap was most greatly inhibited the growth of Shigella dysenteriae ATCC 9361 among gram negative bacteria with 15 mm of the diameter of inhibiting clear zone. Bamboo sap dissolved into 50% ethanol most strongly inhibited the growth of L. monocytogenes ATCC 19114 and it also inhibited the growth of B. subtilis ATCC 6633 which did not show any with the sap dissolved into distilled water. The sap dissolved into 50% ethanol was most greatly inhibited the growth of S. dysenteriae ATCC 9361 among gram negative bacteria with 23 mm of the diameter of inhibiting clear zone, and it inhibited Vibrio parahaemolyticus WSDH 22, Vibrio vulnilicus ATCC 29307 and Escherichia coli O157 WSDH 54 with 16 mm of the diameter of inhibiting clear zone. However, Both of the saps dissolved in distilled water and 50% ethanol did not showed any inhibition against the lactic acid bacteria of Lactobacillus plantarum KCTC and Lactobacillus brevis KCTC. Most of the tested bacteria were more sensitive to the sap dissolved in 50% ethanol than the sap dissolved in distilled water. The lowest minimum inhibitory concentration of the bamboo sap dissolved into 50% ethanol was 0.6 mg eq./disc with L. monocytogenes ATCC 19114, but that of the sap dissolved into distilled water was 0.8 mg eq./disc with Staphylococcus epidermides ATCC 12228, S. dysenteriae ATCC 9361, L. monocytogenes ATCC 19114, Salmonella typhimurium WSU 2380 and V. parahaemolyticus WSDH 22. In a model food system of the sterilized chocolate milk, antibacterial activities of the sap dissolved into 50% ethanol were relatively stronger than those of the sap dissolved into distilled water and the activities against the bacteria tested were very similar each other. These result suggested the bamboo sap can be used as a natural food preservative.

Development of assay method for the activities of new compounds, and the effect of several fungicides against spore germination, adhesion, and myceial growth of Colletotrichum sp. causing red pepper anthracnose (고추 탄저병균의 포자 발아와 부착, 균사 생장에 미치는 화합물의 활성 검정법 확립 및 살균제의 효과)

  • Kim, Jae-Jeung;Kim, Joon-Tae;Park, Sung-Woo;Park, Eun-Suk;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.159-168
    • /
    • 2003
  • With microtiter plate, the assay method was developed for detecting the fungicidal activity of new compounds against spore germination, spore adhesion and mycelial growth of Colletotrichum sp. JC24 cal1Sing red pepper anthracnose. Also, the effects of some commercialized fungicides on fungal development like above mentioned were investigated by measuring the optical density of mycelia grown into wells of microtiter plate. For the standardization of assay method, some factors, such as the treatment of MTT and/or propanol, inodulum density and incubation period, affecting on mycelial optical density were investigated. For obtaining precise and consistent mycelial optical density, it was necessary the treatment of MTT for 12 hrs and propanol for 1 hr. inoculum density adjusted to $1\times10^5$ spores/mL and incubation period for 36 hrs at $25^{\circ}C$. For fungicidal activities, 6 protective fungicides, 6 ones inhibiting sterol biosynthesis, and one inhibiting respiration were used in this study. While mancozeb, chlorothalonil and dithianon among 6 protective fungicides inhibited strongly spore germination, adhesion, and mycelial growth at $6.25{\mu}g/mL$, propineb, iminoctadine and fluazinam inhibited intermediately spore germination and mycelial growth at $100{\mu}g/mL$. Washing above 3 fungicides with new PD broth, their activity against spore adhesion decreased. With hexaconazole, tebuconazole and myclobutanil, the tendency of the activity against fungal differentiation of the early infection stage was similar to the latter group of protective fungicides, showing the decrease of the inhibitory activity against spore adhesion by washing 2 hrs after incubation. However, kresoxim-methyl inhibited spore adhesion distinctly, depending on the applied concentrations. Based on these results, it might be able to assess the fungicidal activity of many compounds against spore germination, adhesion and mycelial growth by the use of microtiter plate in vitro. Using the assay developed in this report, it was possible to investigate the inhibitory activity of some commercialized fungicides, too.

Antibiofilm Activity of Scutellaria baicalensis through the Inhibition of Synthesis of the Cell Wall (1, 3)-${\beta}$-D-Glucan Polymer (세포벽 (1,3)-${\beta}$-D-Glucan Polymer 합성의 저해로 인한 황금(Scutellaria baicalensis)의 항바이오필름 활성)

  • Kim, Younhee
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.88-95
    • /
    • 2013
  • Candida biofilms are self-organized microbial communities growing on the surfaces of host tissues and medical devices. These biofilms have been displaying increasing resistance against conventional antifungal agents. The roots of Scutellaria baicalensis have been widely used for medicinal purpose throughout East Asia. The aim of the present study was to evaluate the effect of S. baicalensis aqueous extract upon the preformed biofilms of 10 clinical C. albicans isolates, and assess the mechanism of the antibiofilm activity. Its effect on preformed biofilm was judged using an XTT reduction assay and the metabolic activity of all tested strains were reduced ($57.7{\pm}17.3$%) at MIC values. The S. baicalenis extract inhibited (1, 3)-${\beta}$-D-glucan synthase activity. The effect of S. baicalensis on the morphology of C. albicans was related to the changes in growth caused by inhibiting glucan synthesis; most cells were round and swollen, and cell walls were densely stained or ruptured. The anticandidal activity was fungicidal, and the extract also arrested C. albicans cells at $G_0/G_1$. The data suggest that S. baicalensis has multiple fatal effects on target fungi, which ultimately result in cell wall disruption and killing by inhibiting (1, 3)-${\beta}$-D-glucan synthesis. Therefore, S. baicalensis holds great promise for use in treating and eliminating biofilm-associated Candida infections.

The Experimental Studies of YangHyulEum Gami-Bang Extracts on the Hair Growth Effect (양혈음가미방(養血飮加味方) 추출물의 발모효과에 대한 실험적 연구)

  • Hong, Jee-Hee;Jung, Hyun-A
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.29 no.3
    • /
    • pp.74-94
    • /
    • 2016
  • Objectives : YangHyulEum Gami-Bang(YHEG) is a hair care extracts which is composed of fourteen plant extracts used in oriental medicine. The purpose of this study is to investigate the effect of YangHyulEum Gami-Bang(YHEG) on the alopecia and hair growth.Methods & Results : The herbal extracts from YangHyulEum Gami-Bang(YHEG) was tested using in vivo and in vitro test models. 1. The YHEG extracts showed effect on the DNA proliferation of the hair dermal papilla cells measured by [3H]thymidine incorporation. 2. YHEG showed promoting on the expression of growth factors such as IGF-1, KGF-1 and inhibiting on the expression of inhibitory hair growth factor such as TGF-β1, BMP-2 estimated by qPCR. 3. The YHEG extracts showed effect on the activation of β-catenin in the dermal papilla cells. 4. YHEG showed inhibitory effects of NO synthesis at 0.2% concentrations. 5. YHEG showed effects in the expression of IL-1β, TNF-α, IL-6, COX-2 and iNOS gene in the LPS stimulated RAW 264.7 cells. 6. The hair growth index of the YHEG extracts ranked at over 2 when compared to control group which was ranked at 0. 7. The hair follicle number, length and size of the experimental group were remarkably higher than the control group in the histological observation.Conclusions : These results suggest that YangHyulEum Gami-Bang(YHEG) has hair growth promoting activity and it can be used as a potent treatment agent for preventing hair loss and stimulating hair growth for treatment of alopecia.

Effect of Fertilization of UV-B Sensitivity of Cucumber Plant (질소, 인산, 칼륨시비에 따른 오이의 자외선 감수성 변화)

  • Bae, Gong-Young;Lee, Yong-Beom;Park, So-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.3
    • /
    • pp.227-232
    • /
    • 1997
  • Visible injury appeared 7 days after ultraviolet-B(UV-B) irradiation, but did not show any significant decline of growth in cucumber plant. However the growth of the first leaves of fertilized plants was suppressed by UV-B irradiation. Especially the most effective growth retardiation appeared when supplied with nitrogen rather than phosphate and potassium. These results suggest that UV-B may play an important role in inhibiting nitrogen metabolism. Therefore we examined the effect of activity of nitrate reductase, and found that the nitrate reductase activity of the first leaves was increased by UV-B irradiation for 7 days and fertilization. We examined the effect of plant hormone on the inhibition of growth in the first leaves. Benzyladenine promoted the growth of discs excised from the first leaves by fertilization and without UV-B, but did not promote the growth of leaf discs from UV-B irradiated plants. We conclude that the UV-B-induced decrease in the growth of the first leaves could be related to reduction in sensitivity to plant hormones.

  • PDF

Antimicrobial activity of extracts from medicinal herbs against Escherichia coli (Escherichia coli에 대한 한약재추출물의 항균활성)

  • Cho, Jae-yong;Choi, Il;Hwang, Eui-kyung
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.625-631
    • /
    • 2003
  • The extracts from 40 different traditional medicinal herbs were used to investigate the antimicrobial activities against Escherichia coli. Among them, the extracts from Paeonia suffruticosa (PS), Siegesbeckia orientalis (SO), Schizandra chinensis (SC), Caesalpinia sappan (CS) and Rhus javanica (RJ) exhibited high antimicrobial activities against E. coli, Minimum inhibitory concentrations (MIC) of the RJ extract against E. coli were 0.8 mg/ml. After heating treatment of these extracts, the antimicrobial activities against E. coli were significantly reduced in case of the CS extract. After alkaline or acid treatment of these extracts, the antimicrobial activities against E. coli were significantly increased in the PS extract but reduced in both SO and RJ extract. Since extracts from RJ and CS exhibited the highest antimicrobial activities, bacterial growth-inhibiting activities against E. coli by these two extracts were further examined. Optical density at 620 nm after 24 hours incubation of E. coli in the presence of 100, 300 or 500 ppm of RJ extract ranged from 0.1 to 0.2 compared to 0.35~0.65 in the absence of RJ extract, indicating that growth of E. coli was significantly inhibited within 24 hours by the addition of at least 100 ppm of RJ extract. Optical density at 620 nm after 24 hours incubation of E. coli in the presence of 300 or 500 ppm of CS extract ranged from 0.01 to 0.25 compared to 0.5~0.55 in the absence of CS extract, indicating that growth of E. coli was also significantly inhibited within 24 hours by the addition of at least 300 ppm of CS extract. In conclusion, these findings suggest that extracts from RJ and CS may play important roles for antimicrobial activities against E. coli causing various animal diseases.

Production of HCN, Weed Control Substance, by Pseudomonas koreensis and its Plant Growth-Promoting and Termiticidal Activities (Pseudomonas koreensis에 의한 잡초제어활성물질인 HCN 생성과 이 균주의 식물성장 촉진 및 흰개미 살충 활성)

  • Yoo, Ji-Yeon;Jang, Eun-Jin;Park, Soo-Yeun;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.771-780
    • /
    • 2018
  • To develope a microbial weed control agent, HCN-producing bacteria were isolated, and their characteristics were investigated. A selected strain of WA15 was identified as Pseudomonas koreensis by morphological, cultural, biochemical and 16S rRNA gene analyses. The conditions for HCN production was investigated by a One-Variable-at-a-Time (OVT) method. The optimal HCN production conditions were tryptone 1%, glycine 0.06%, NaCl 1%, and an initial pH and temperature of 5.0 and $30^{\circ}C$, respectively. The major component for HCN production was glycine. Under optimal conditions, HCN production was about 3 times higher than that of the basal medium. The WA15 strain had physiological activities, such as indoleacetic acid that was associated with the elongation of plant roots and siderophore and ammonification inhibiting fungal growth, and produced hydrolytic enzymes, such as cellulase, pectinase and lipase. The strain was able to inhibit the growth of phytopathogenic fungi, such as Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum, by the synergistic action of volatile HCN and diffusible antimicrobial compounds. A microscopic observation of R. solani that was teated with the WA15 strain showed morphological abnormalities of fungal mycelia, which could explain the role of the antimicrobial metabolites that were produced by the WA15 strain. The volatile HCN produced by the WA15 strain was also found to have insecticidal activity against termites. Our results indicate that Pseudomonas koreensis WA15 can be applied as a microbial agent for weed control and also as a termite repellent. Furthermore, it could be applied as a microbial termiticidal agent to replace synthetic insecticides.