• Title/Summary/Keyword: growth yields

Search Result 1,064, Processing Time 0.035 seconds

Heterosis of Growth Characters and Biomass Production in Interspecific Hybrid of Forage Sorghum (청예용 수수류 일대 잡종의 생육 및 건물수량에 대한 잡종강세)

  • 강정훈;이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.640-649
    • /
    • 1996
  • This study was conducted to obtain fundamental informations necessary to breed forage sorghum at the field of the Livestock Experiment Station from 1988 to 1991. Heterosis was discussed in crossing groups of sorghum X sweet sorghum, sorghum X sudangrass, and (sorghum X sweet sorghum) X sudangrass. Leaf dry weight and stalk dry weight per plant in sweet sorghum crossing group, stalk dry weight per plant in sorghum X sudangrass crosses and leaf area per plant in three way crosses showed the greatest Heterobeltiosis(H$_{b}$). There were significant differences in plant height, stalk diameter and number of tillers per plant between sweet sorghum and sudangrass crosses. H$_{b}$ for total dry matter yield in sweet sorghum and sudangrass crosses were 45.9% and 95.0%, respectively. On the other hand, heterosis for total dry matter yield in three way crosses was smaller than H$_{b}$. There was no relationship between dry matter yield of parents and heterosis of hybrids in sweetsorghum crosses. However, positive correlations between parental yield and hybrid yields were observed. In sudangrass crosses, there were negative correlations between parental yields and heterosis of hybrids. However, no correlation between parental yields and hybrid yields were observed. In three way crosses, there were no correlations between parental yields and heterosis, and between parental yields and hybrids yields.

  • PDF

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on the Dry Matter Yields of Orcharograss and White Clover (Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover의 건물수량에 미치는 영향)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.3
    • /
    • pp.193-200
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of systematic variation application of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50, 75/25, and $100/0\%$ in the Fe/Cu(trial-1), Mn/Zn(trial-2), and Fe+Cu/Mn+Zn(trial-3), respectively. The treatments of Fe/Mn/Cu/Zn(trial-4) were composed of $70\%$ in main element and $10\%$ in other 3 elements, respectively. 1. By the systematic variations of Fe, Mn, Cu, and Zn, the yields were more significantly influenced in white clover than in orchardgrass. In addition, the yields of white clover were closely correlated to the trends of root/nodule growth and flowering. In the Fe/Cu trial, the relatively high yields were obtained at the $100/0\%$ in orchardgrass and at the $75/25\%$ in white clover. The yields of white clover were more negatively influenced by the 100/0(Cu control) than by the 0/100(Fe control). The yields of orchardgrass, however, tended to be opposite to the above trends. 2. In the Mn/Zn trial, both forages showed generally high yields at the high ratios of Mn/Zn. Compared with orchardgrass, the yields of white clover were greatly decreased by the Mn-deficiency(low ratio of Mn/Zn). The effects of Zn on forage yields, however, were not recognized. 3. In the Fe+Cu/Mn+Zn trial, the yields of orchardgrass tended to be slightly different among the treatments. The yields of white clover, however, were relatively' high at the 75/25, and showed a severe decrease at the 100/0 in the 2nd half cuts. In the Fe/Mn/Cu/Zn trial, the yields of white clover tended to be relatively high at the Cu and Zn treatments. It was likely to be caused by the balanced Fe/Mn ratio.

In Vitro and Greenhouse Evaluation of Cucumber Growth Enhanced by Rhizosphere Microorganisms (실험실내와 비닐하우스에서 근권 미생물에 의한 오이 생육증진의 검정)

  • 배영석;장성식;박창석;김희규
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.292-297
    • /
    • 1995
  • We developed an in vitro assay method for evaluating plant growth promotion and providing an evidence that the growth promotion is rendered by growth enhancing factors. The amendment of culture filtrates of Trichoderma harzianum T95 and Gliocladium virens G872 and G872B in Murashige and Skoog (MS) agar medium enhanced the cotyledon growth of cucumber in terms of fresh weight and primary leaf area of cucumber cotyledon cuttings, of which the treatment of G. virens G872B was the most effective. The mycelial culture filtrate of G872B was more effective in the growth promotion than its conidial germling filtrate. The addition of 1% sucrose in MS mineral medium with 0.1% culture filtrates of the antagonists (T95 and G872B) was optimum for enhancing the effect of the filtrates on the growth of cotyledon cuttings in vitro. When cucumber seeds treated with G872B, Pseudomonas putida Pf3 or the G872B-Pf3 mixture were planted in a greenhouse, the rate of seed germination, biomass of shoot and root, and yield of cucumber fruits were increased, especially by G872B or the G872B-Pf3 mixture. Correspondingly, cucumber fruit yields in early to middle-cycles of harvest were significantly greater in the plots of G872B than the control and Pf3-treated plots, and the final yield was highest in the plots of the G872B-Pf3 mixture applications.

  • PDF

Use of plant growth-promoting rhizobacteria to control stress responses of plant roots

  • Kang, Bin-Goo;Kim, Woo-Taek;Yun, Hye-Sup;Chang, Soo-Chul
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.179-183
    • /
    • 2010
  • Ethylene is a key gaseous hormone that controls various physiological processes in plants including growth, senescence, fruit ripening, and responses to abiotic and biotic stresses. In spite of some of these positive effects, the gas usually inhibits plant growth. While chemical fertilizers help plants grow better by providing soil-limited nutrients such as nitrogen and phosphate, overusage often results in growth inhibition by soil contamination and subsequent stress responses in plants. Therefore, controlling ethylene production in plants becomes one of the attractive challenges to increase crop yields. Some soil bacteria among plant growth-promoting rhizobacteria (PGPRs) can stimulate plant growth even under stressful conditions by reducing ethylene levels in plants, hence the term "stress controllers" for these bacteria. Thus, manipulation of relevant genes or gene products might not only help clear polluted soil of contaminants but contribute to elevating the crop productivity. In this article, the beneficial soil bacteria and the mechanisms of reduced ethylene production in plants by stress controllers are discussed.

Effects of Sward Composition and N.P Fertilization on Forage Yields and Intercompetition of Subterranean clover-Italian Ryegrass and Berseem clover-Italian Ryehrass Mixtures (식생비율과 질소.인산시용이 Subterranean Clover-Italian Ryegrass 및 Berseem Clover-Italian Ryegrass 혼파 초지의 생산성과 종간경합에 미치는 영향)

  • 강진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.274-282
    • /
    • 1992
  • Annual forage crops have been increasingly important for conpensating insufficient forage production of perennial pastures took place for short interval. This experiment was conducted to determine the effect of sward composition and NㆍP fertilization on forage production and intercompetition of subterranean clover-Italian ryegrass and berseem clover-Italian ryegrass. The two clovers were grown in the field at the clover/ryegrass ratios of 0/100, 25/75, 50/50, 75/25 and 100/0 where no, N (200 kg /ha), P (50 kg /ha) or NㆍP fertilization was done. Each crop was separated after harvest and drying. Relative Crowding Coefficient (RCC), aggressivity and Relative Yield Total (RYT) were analyzed on the basis of the harvested dry matter of each crop. Berseem clover-ryegrass mixtures produced greater yield than subclover-ryegrass mixtures as a result of higher yields of the two component species. In the former forage yield was increased with increased rate of clover up to 75%, while in the latter the highest yields were obtained at more than 50% of the clover. In the mixtures N stimulated the growth of ryegrass, whereas P did only that of subclover. The two clovers produced more forage than the companion grass under no and only P fertilization although the reverse result was true under N or NㆍP fertilization, but the annual forage yield was decreased in the order of N and P, N, P, and no fertilization. The mixture yields were overyielded compared to the Expected Yield. Although generally RCCs and RYTs of subclover were higher than those of berseem clover in the mixtures differing the composition rate or under no and only P fertilization, those of the former clover were lower under N or NㆍP fertilization. In the clover-ryegrass mixtures, ryegrass acted as an aggressor and became more aggressive under P fertilization.

  • PDF

Effects of Soil Amendment Application on Soil Physico-chemical Properties and Yields of Summer Forage Crops in the Sukmoon Reclaimed Tidal Land in Korea (석문 간척지에서 돈분액비 및 석고처리가 여름철 사료작물 수량 및 토양이화학성에 미치는 영향)

  • Choi, Ki-Choon;Yoon, Sei-Hyung;Shin, Jae-Soon;Kim, Dong-Kwan;Han, Hyo-Shim;Supanjani, Supanjani;Lee, Kyung-Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.354-361
    • /
    • 2010
  • Soil physico-chemical properties and microbial densities are affected by organic sources and soil amendment applied to improve soil environments or quality. Generally organic fertilizer effects on forage crops yield and soil properties are partly due to changes of soil composition. We investigated the effects of swine slurry (SS), swine slurry composting-biofilteration(SCB) and chemical fertilizer(F) with gypsum(G) combinations on soil physico-chemical properties and yields of summer forage crop in the Sukmoon reclaimed tidal land in Korea. The forage crops used in this experiment were corn and sorghum$\times$sudangrass hybrid(hereafter sorghum). Our results showed that the soil physico-chemical properties in the combined (F+G, SS+G, SCB+G) treatments increased contents of organic matter and exchangeable $Ca^{2+}$, but exchangeable $Na^+$, $K^+$ and $Mg^{2+}$ reduced to 1-10% for two forage crops, compared to non-combined (F, SS, SCB) treatment. The density of soil microorganism such as bacteria, actinomycetes and fungi, increased significantly by SS+G and SCB+G treatments. This means that treatment of combined organic fertilizer with G lowered salinity levels and improved with microbial growth. The combined treatments also increased the total yields 2.3-6.2% for corn and 2.0-8.7% for sorghum, compared with non-combined treatment. This experiment suggests the combined treatments could increase the total yields of summer forage crops and change of soil physico-chemical properties in the Sukmoon reclaimed tidal land in Korea.

Fundamental study on the evapo-transpiration requirements of paddy rice plant (수도용수량계획상의 엽면증발량 및 주간수면증발량에 관한 기초적인 연구)

  • 김철기
    • Journal of the Korean Professional Engineers Association
    • /
    • v.2 no.6_7
    • /
    • pp.12-23
    • /
    • 1969
  • The purpose of this study is to find out the reasonable amount of evapo-transpiration required for the paddy rice plant during the whole growing season. So, on the basis of the 3year experimental data concerning the evapo-transpiration from 1966 to 1968, the author obtained the following results. 1) The leaf area index in the densely planted plot is generally higher than that in the conventionally planted one during the first half of growing season. So, the coefficient of transpiration in the former plot is some what higher than in the latter, and the coefficient of water surface evaporation under the plant cover has the inverse relation between both plots. 2) It is unreasonable that coefficient of evapo-transpiration is applied to the calculation of the evapo-transpiration requirments of each growing stage, because a certain degree of variation in meteorological factors and in the thickness of the plant growth is involved in it. 3) It is most reasonable that the rate of transpiration and of the water surface evaporation is applied to the calculation of the transpirated amount and evaporated one in each growing stage because it shows almost constant value in spite of any meteorological conditions in so far as the variety of rice, planted density and control of applying fertilizer are same and the disease and blight are negligible. 4) The ratio of the amount of transpiration to the weight of the whole air dried yields has the tendency of decreasing as that of the yields increase, having almost constant value despite the amount of pan evaporation; and the value is about 210 when the weight of root parts is included to that of the yields. 5) Although the required amount of transpiration during the whole growing season can be calculated with the above ratio, fig. 7 showing the relation between the amount of transpiration and the weight of the yields is more reasonable and will be convinient to find it. And the requirements of water surface evaporation during the same season can also be directly found with the weight of air dried straw refering to fig.8.

  • PDF

Garlic yields estimation using climate data (기상자료를 이용한 마늘 생산량 추정)

  • Choi, Sungchun;Baek, Jangsun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.969-977
    • /
    • 2016
  • Climate change affects the growth of crops which were planted especially in fields, and it becomes more important to use climate data to predict the yields of the major vagetables. The variation of the crop products caused by climate change is one of the significant factors for the discrepancy of the demand and supply, and leads to the price instability. In this paper, using a panel regression model, we predicted the garlic yields with the weather conditions of different regions. More specifically we used the panel data of the several climate variables for 15 main garlic production areas from 2006 to 2015. Seven variables (average temperature, average maximum temperature, average minimum temperature, average surface temperature, cumulative precipitation, average relative humidity, cumulative duration time of sunshine) for each month were considered, and most significant 7 variables were selected from the total 84 variables by the stepwise regression. The random effects model was chosen by the Hausman test. The average maximum temperature (January), the cumulative precipitation (March, October), the cumulative duration time of sunshine (April, October) were chosen among the variables as the significant climate variables of the model

Determination of Marginal Sowing Date for Soybean in Paddy Field Cultivation in the Southern Region of Korea

  • Park, Hyeon Jin;Han, Won-Young;Oh, Ki-Won;Shin, Sang-Ouk;Lee, Byong Won;Ko, Jong-Min;Baek, In Youl;Kang, Hang Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.104-112
    • /
    • 2016
  • A double-cropping system with soybean (Glycine max) following the cultivation of potato, garlic, and onion is widely adopted in the southern region of Korea. For this system, marginal dates for planting must be determined for profitable soybean yields, because the decision to plant soybean as a second crop is occasionally delayed by harvest of the first crop and weather conditions. In order to investigate the effect of planting date on soybean yield, three cultivars (early and late maturity) were planted on seven different dates from May 1 to July 30 in both paddy and upland fields across 2012 and 2013. Soybean yields were significantly different among the planting dates and the cultivars; however, the interaction between cultivar and planting date was not significant. Based on linear regression, the maximum yield of soybean was reached with a June 10 planting date, with a sharp decline in yield for crops planted after this date. The results of this study were consistent with those of a previous one that recommends early and mid-June as the optimum planting period. Regardless of soybean ecotype, a reduction in yield of greater than 20% occurred when soybean was planted after mid-July. Frost during soybean growth can reduce yields, and the late maturity cultivars planted on July 30 were damaged by frost before completing maturation and harvest; however, early maturity cultivars were safely harvested. For sufficient time to develop and reach profitable yields, the planting of soybean before mid-July is recommended.

Yield and Production Forecasting of Paddy Rice at a Sub-county Scale Resolution by Using Crop Simulation and Weather Interpolation Techniques (기상자료 공간내삽과 작물 생육모의기법에 의한 전국의 읍면 단위 쌀 생산량 예측)

  • 윤진일;조경숙
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.37-43
    • /
    • 2001
  • Crop status monitoring and yield prediction at higher spatial resolution is a valuable tool in various decision making processes including agricultural policy making by the national and local governments. A prototype crop forecasting system was developed to project the size of rice crop across geographic areas nationwide, based on daily weather pattern. The system consists of crop models and the input data for 1,455 cultivation zone units (the smallest administrative unit of local government in South Korea called "Myun") making up the coterminous South Korea. CERES-rice, a rice crop growth simulation model, was tuned to have genetic characteristics pertinent to domestic cultivars. Daily maximum/minimum temperature, solar radiation, and precipitation surface on 1km by 1km grid spacing were prepared by a spatial interpolation of 63 point observations from the Korea Meteorological Administration network. Spatial mean weather data were derived for each Myun and transformed to the model input format. Soil characteristics and management information at each Myun were available from the Rural Development Administration. The system was applied to the forecasting of national rice production for the recent 3 years (1997 to 1999). The model was run with the past weather data as of September 15 each year, which is about a month earlier than the actual harvest date. Simulated yields of 1,455 Myuns were grouped into 162 counties by acreage-weighted summation to enable the validation, since the official production statistics from the Ministry of Agriculture and Forestry is on the county basis. Forecast yields were less sensitive to the changes in annual climate than the reported yields and there was a relatively weak correlation between the forecast and the reported yields. However, the projected size of rice crop at each county, which was obtained by multiplication of the mean yield with the acreage, was close to the reported production with the $r^2$ values higher than 0.97 in all three years.

  • PDF