• Title/Summary/Keyword: growth yield

Search Result 5,398, Processing Time 0.028 seconds

Relationship Between Heat Unit Requirement and Growth and Yield of Mulberry, Morns indica L.

  • Sarkar A.;Rekha M.;Keshavacharyulu K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.1
    • /
    • pp.65-68
    • /
    • 2005
  • Growth and development of a plant over a growing season is closely related to the daily accumulation of heat. Heat unit measured by accumulated growing degree days (GDD) is becoming increasingly popular to estimate the growth of a plant or even in insect. GDD or heat accumulation per day is measured by calculating average daily temperature and then subtracting the base temperature below which growth does not occur. Heat accumulation per day is added for the desired period and accumulated GDD is determined. The present study was conducted in five seasons in an established garden with K-2, S-36 and V-1 mulberry varieties belonging to Morus indica L. grown under completely irrigated condition at the farm of CSRTI, Mysore during 2001 - 2002. Plants were pruned in each season and the growth of the plant measured by total shoot length and fresh leaf yield was recorded at an interval of 5 days starting from 30 days of pruning (DAP) to 70 days when all the plants were pruned. The accumulated GDD for the corresponding days were recorded and used for analysis. Accumulated growing degree days (GDD) have been found to be perfectly correlated with both growth and yield in all the seasons in all the varieties studied. The high $R^2$ values indicated a strong relationship between the accumulated GDD and, growth and yield of mulberry.

Effect of Waterlogging Duration on Growth Characteristics and Productivity of Forage Corn at Different Growth Stages Under Paddy Field Conditions

  • Jung, Jeong Sung;Choi, Gi-Jun;Choi, Bo-Ram
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • The purpose of this study was to determine the effect of waterlogging duration on the growth characteristics and productivity of forage corn at different growth stages under paddy field conditions. Treatments consisted of waterlogging at two growth stages (V7 or V14) for four waterlogging durations (no waterlogging, 48 hours, 72 hours, and 96 hours, respectively). The V14 growth stage was more vulnerable to waterlogging than the V7 stage. Among the waterlogging durations, the lodging score increased at 48 hours. The stem height of forage corn decreased with the increase in waterlogging duration at the different growth stages (V7 and V14). Increase in waterlogging duration reduced the stem dry matter yield, ear dry matter yield, and total dry matter yield at both growing stages (V7 and V14). The waterlogging treatments at the V14 stage affected ear dry matter yield more than those at the V7 growing stage. Thus, the management of forage corn under paddy field conditions must be strengthened during early (V7) and grain fill stages (V14). When waterlogging occurs, surface and subsurface drainage should be implemented within 48 hours to control (no waterlogging) the groundwater level and, thus, minimize economic losses due to forage corn damage.

Optimal Levels of Additional N Fertigation for Greenhouse Watermelon Based on Cropping Pattern and Growth Stage

  • Sung, Jwakyung;Jung, Kangho;Yun, Hejin;Cho, Minji;Lim, Jungeun;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.699-704
    • /
    • 2016
  • An estimation of optimal requirement of additional N by cropping pattern and growth stage is very important for greenhouse watermelon. The objectives of this study were to estimate an amount of optimal additional N based on growth, N uptake and yield of watermelon. In order to achieve these goals, we performed the study at farmer's greenhouse with a fertigation system and watermelon was cultivated three times (spring, summer and autumn) in 2015. The levels of additional N were set up with x0.5, x0.75, x1.0 and x1.5 of the $NO_3$-N-based soil-testing N supply for watermelon cultivation. The trends of growth and N uptake of watermelon markedly differed from cropping pattern; spring (sigmoid), summer and autumn (linear). The yield of watermelon was the highest at summer season and followed by autumn and spring. Also, the x1.5N showed a significantly higher yield compared to other N treatments. On the basis of growth, N uptake and yield of watermelon, we estimated an optimal level of additional N by cropping pattern and growth stage as follows; 1) spring (transplanting ~ 6 WAT : 6 ~ 14 WAT : 14 ~ harvest = 5 : 90 : 5%), summer (transplanting ~ 4 WAT : 4 ~ 8 WAT : 8 ~ harvest = 25 : 50 : 25%) and autumn (transplanting ~ 4 WAT : 4 ~ harvesting : 50 : 50%). In conclusion, nutrient management, especially N, based on cropping pattern and growth stage was effective for favorable growth and yield of watermelon.

The Manipulation of Milk Secretion in Lactating Dairy Cows - Review -

  • Rose, M.T.;Obara, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.236-243
    • /
    • 2000
  • A number of developments have occurred over recent years that are being used commercially or have the potential to increase the milk yield and consequently the efficiency of dairy cows. Bovine growth hormone is the most widely known of several attempts that have been made to alter the metabolic endocrinology of dairy cows to increase the rate of milk secretion. The factors affecting the milk yield response to growth hormone, growth hormone-releasing factor, thyroxine and placental lactogen as well as to the immuno-neutralization of somatostatin are briefly considered. Secondly, the recent greater understanding of the mechanism by which the milk yield is increased following more frequent milking, which has resulted from the identification and characterization of the feedback inhibitor of lactation (FIL) protein, is reviewed. The identification of this protein provides new avenues of research which may lead to a reduction in the rate of decline in milk yield with advancing lactation or to undiminished milk yields despite a reduction in frequency with which the animals are milked.

Development of Yield Forecast Models for Autumn Chinese Cabbage and Radish Using Crop Growth and Development Information (생육정보를 이용한 가을배추와 가을무 단수 예측 모형 개발)

  • Lee, Choon-Soo;Yang, Sung-Bum
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.279-293
    • /
    • 2017
  • This study suggests the yield forecast models for autumn chinese cabbage and radish using crop growth and development information. For this, we construct 24 alternative yield forecast models and compare the predictive power using root mean square percentage errors. The results shows that the predictive power of model including crop growth and development informations is better than model which does not include those informations. But the forecast errors of best forecast models exceeds 5%. Thus it is important to establish reliable data and improve forecast models.

Bottle Cultivation of Pleurotus ostreatus, Agrocybe aegerita and Ganoderma lucidum using Rice hull media

  • Lee, he-duck;Kim, hong-kyu;Kim, yong-gyun;Lee, ga-soon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.44-46
    • /
    • 2001
  • Rice hull was used as a additive in order to find the effect for incresing of mushroom growth and yield in Chungnam Provincial techinical institution. 1 Treatment of 80% rice hull in small Neutaribeosut mycelial grow duration is shorter about 11 days and yield increased about 7% than conventional culture. 2. In case of Chongpung Neutaribeosut bottle culture, mycelial growth duration is shorter about two to three days in additive of 30 to 80% rice hull compared to conventional but yield similar to conventional. 3. Treatment of 30% rice hull in Agrocybe aegerita bottle culture, mycelial growth and yield increased 6days and 6% than convrntional, respectively 4 Treatment additived of 30% to 40% rice hull in Ganoderma lucidum bottle culture, similar to 454ays demand in mycelial grow duration and 38g yield/bottle in conventioal culture methods.

  • PDF

Response of Rice Yield to Nitrogen Application Rate under Variable Soil Conditions

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.247-255
    • /
    • 2005
  • ice yield and plant growth response to nitrogen (N) fertilizer may vary within a field, probably due to spatially variable soil conditions. An experiment designed for studying the response of rice yield to different rates of N in combination with variable soil conditions was carried out at a field where spatial variation in soil properties, plant growth, and yield across the field was documented from our previous studies for two years. The field with area of 6,600 m2 was divided into six strips running east-west so that variable soil conditions could be included in each strip. Each strip was subjected to different N application level (six levels from 0 to 165kg/ha), and schematically divided into 12 grids $(10m \times10m\;for\;each\;grid)$ for sampling and measurement of plant growth and rice grain yield. Most of plant growth parameters and rice yield showed high variations even at the same N fertilizer level due to the spatially variable soil condition. However, the maximum plant growth and yield response to N fertilizer rate that was analyzed using boundary line analysis followed the Mitcherlich equation (negative exponential function), approaching a maximum value with increasing N fertilizer rate. Assuming the obtainable maximum rice yield is constrained by a limiting soil property, the following model to predict rice grain yield was obtained: $Y=10765{1-0.4704^*EXP(-0.0117^*FN)}^*MIN(I-{clay},\;I_{om},\;I_{cec},\;I_{TN},\; I_{Si})$ where FN is N fertilizer rate (kg/ha), I is index for subscripted soil properties, and MIN is an operator for selecting the minimum value. The observed and predicted yield was well fitted to 1:1 line (Y=X) with determination coefficient of 0.564. As this result was obtained in a very limited condition and did not explain the yield variability so high, this result may not be applied to practical N management. However, this approach has potential for quantifying the grain yield response to N fertilizer rate under variable soil conditions and formulating the site-specific N prescription for the management of spatial yield variability in a field if sufficient data set is acquired for boundary line analysis.

A Growth and Yield Model for Predicting Both Forest Stumpage and Mill Side Manufactured Product Yields and Economics

  • Schultz Emily B.;Matney Thomas G.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.305-309
    • /
    • 2006
  • This paper presents and illustrates the application of a growth and yield model that supports both forest and mill side volume and value estimates. Traditional forest stand growth and yield models represent the forest landowner view of yield and economics. Predicted yields are estimates of what one would expect from a procurement cruise, and current stumpage prices are applied to investigate optimum management strategies. Optimum management regimes and rotation ages obtained from the forest side view are unlikely to be economically optimal when viewed from the mill side. The actual distribution of recoverable manufactured product and its value are highly dependent on mill technologies and configurations. Overcoming this limitation of growth and yield computer models necessitates the ability to predict and price the expected manufactured distribution of lumber, lineal meters of veneer, and tonnes of air dried pulp fiber yield. With these embedded models, users of the yield simulator can evaluate the economics of possible/feasible management regimes from both the forest and mill business sides. The simulator is a forest side model that has been modified to produce estimates of manufactured product yields by embedding models for 1) pulpwood chip size class distribution and pulp yield for any kappa number (Schultz and Matney, 2002), 2) a lumber yield and pricing model based on the Best Opening Face model developed by the USDA Forest Service Forest Products Laboratory (Lewis, 1985a and Lewis, 1985b), and 3) a lineal meter veneer model derived from peeler block tests. While the model is strictly applicable to planted loblolly pine (Pinus taeda L.) on cutover site-prepared land in the United States (US) Gulf South, the model and computer program are adaptable to any region and forest type.

  • PDF

Growth Response of Grasses to Chitosan Solution Amended Soil (Chitosan 혼합토양에 대한 목초의 생육반응)

  • 이주삼;조익환;전하준
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.2
    • /
    • pp.93-104
    • /
    • 1997
  • In order to investigate the growth response of grasses to chitosan solution amended soil were studied from the standpoint of estimating the growth stimulating adequate concentrations of chitosan solution amended soil in each grass. Three species in this experiment used were orchardgrass, tall fescue and reed canarygrass. Six different concentrations of chitosan solution amended soil were 0%(control), 0.01%, 0.05%, 0.1%, 0.5% and 1.0%, respectively. The resulte obtained were as follows ; 1. Leaf area(LA), dry weight of leaf(LW), dry weight of shoot(SHW), biological yield(BY), C/f ratio and T/R ratio were significantly different between species. 2. Growth stimulating effect by chitosan solution amended soil were found in plant length(PL) and T/R ratios of grasses. 3. Adequate concentrations of chitosan solution amended soil were different between species. The highest values of yield components and dry weight of plant parts were obtained at 0.01% in orchardgrass, 0,05% in reed canarygrass and 1.0% in tall fescue, respectively. 4. The growth response of grasses to chitosan solution amended soil were different between species. Thus, an increase in leaf area(LA) and dry weight of leaf(LW) by chitosan solution amended soil was mainly contributed to increase in dry weight of shoot(SHW) and biological yield(BY) in orchardgrass. Chitosan solution amended soil also stimulated growth of shoot and increased in biological yield(BY) in tall fescue. In reed canarygrass contributed to increase in C/F ratios. 5. Adequate concentrations of chitosan solution amended soil for an economical benefit of cultivation and dry matter production of grasses were ranged from 0.01% to 0.05% levels.

  • PDF

Effect of Drought Stress at Various Growth Stages on Soybean Growth and Yield (생육단계별 한발처리가 콩의 생육 및 수량에 미치는 영향)

  • 김충국;고문환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.89-94
    • /
    • 1997
  • The present study was conducted to know the growth and yield of in response to the drought stress at the different soybean growth stage. Drought stress was given to the soybean plants on early vegetative growth at fourth-node stage(FNS), mid-growth at beginning pod stage(BPS) and late growth at beginning seed stage(BSS) for 30 days, which are high availability in soil water stress on climate condition of Korea. Dry weight was decreased severely by water stress at FNS, and BPS and BSS has no difference compared to control. Chlorophyll content of leaf severely decreased at the end of water stress of FNS and BPS, but was recovered at the harvest stage. Drought-stressed root distributed mainly near the soil surface and number and dry weight of root nodule were decreased severely by drought stress at BPS. Number of pod, seed weight and yield were decreased by drought stress and showed the highest yield loss at BPS.

  • PDF