• Title/Summary/Keyword: growth simulation

Search Result 1,085, Processing Time 0.036 seconds

Macroscopic and microscopic mass transfer in silicon czochralski method

  • Kakimoto, Koichi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.381-383
    • /
    • 1999
  • First topic of this paper aims to clarify how oxygen and heat transfer in silicon melt under cusp-shaped magnetic fields. We obtained asymmetric temperature distribution by using time dependent and three-dimensional calculation. Second topic is study on molecular dynamics simulation, which was carried out to estimate diffusion constants of oxygen in silicon melt.

  • PDF

Numerical analysis of CZ growth process for sapphire crystal of 300 mm length: Part I. Influence of hot zone structure modification on crystal temperature (300 mm 길이의 사파이어 단결정 대한 CZ성장공정의 수치해석: Part I. 핫존 구조 변경이 결정 온도에 미치는 영향)

  • Shin, Ho Yong;Hong, Su Min;Kim, Jong Ho;Jeong, Dae Yong;Im, Jong In
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.265-271
    • /
    • 2013
  • Czochralski (CZ) growth process is one of the most important techniques for growing high quality sapphire single crystal for LED application. In this study, the inductively-heated CZ growth processes for the sapphire crystal of 300 mm length have been analyzed numerically using finite element method. The hot zone structures were modified with the crucible geometry change and the additional insulation layer installed above the crucible. The results show that the solid-liquid interface height decreased from about 80 mm at initial stage to 40 mm after mid-stage due to achieve the growth speed balance. Also the optimal input power of the modified system was similar with the original one due to the compensation effects of the crucible geometry and additional insulation. The crystal temperature grown by the modified CZ grower was increased about 10 K than the original one. Therefore the sapphire crystal of 300 mm height was grown successfully.

Growth Mechanism of Graphene structure on 3C-SiC(111) Surface: A Molecular Dynamics Simulation

  • Hwang, Yu-Bin;Lee, Eung-Gwan;Choe, Hui-Chae;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.433-433
    • /
    • 2011
  • Since the concept of graphene was established, it has been intensively investigated by researchers. The unique characteristics of graphene have been reported, the graphene attracted a lot of attention for material overcomes the limitations of existing semiconductor materials. Because of these trends, economical fabrication technique is becoming more and more important topic. Especially, the epitaxial growth method by sublimating the silicon atoms on Silicon carbide (SiC) substrate have been reported on the mass production of high quality graphene sheets. Although SiC exists in a variety of polytypes, the 3C-SiC polytypes is the only polytype that grows directly on Si substrate. To practical use of graphene for electronic devices, the technique, forming the graphene on 3C-SiC(111)/Si structure, is much helpful technique. In this paper, we report on the growth of graphene on 3C-SiC(111) surface. To investigate the morphology of formed graphene on the 3C-SiC(111) surface, the radial distribution function (RDF) was calculated using molecular dynamics (MD) simulation. Through the comparison between the kinetic energies and the diffusion energy barrier of surface carbon atoms, we successfully determined that the graphitization strongly depends on temperature. This graphitization occurs above the annealing temperature of 1500K, and is also closely related to the behavior of carbon atoms on SiC surface. By analyzing the results, we found that the diffusion energy barrier is the key parameter of graphene growth on SiC surface.

  • PDF

Effect of Temper-Embrittlement on Surface Crack Growth and Fatigue Life Prediction (재질열화가 표면 균열 진전에 미치는 영향과 수명 예측에 관한 연구)

  • 권재도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.921-927
    • /
    • 1989
  • One of the most important problems in recent life prediction is to introduce the degradation effects into life prediction procedure. In the present paper, the effect of the material degradation on the fatigue surface crack growth and fatigue life prediction in a 2 1/4 Cr-1Mo steel were investigated. The 2 1/4 Cr-1Mo steel has been used in a plant having operated for over 60000hours and subjected to material degradation due to temper-embitterment. A Monte-Carlo simulation was made on the basis of the data obtained in the experiment in order to determine the P-S-N diagrams of surface crack growth for the degraded and recovered steels.

Statistical Analysis for Creep Crack Growth Behavior of Modified 9Cr-1Mo Steel (Modified 9Cr-1Mo 강의 크리프 균열성장 거동에 관한 통계적 해석)

  • Jung, Ik-Hee;Kim, Woo-Gon;Yin, Song-Nan;Ryu, Woo-Seog;Kim, Seon-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.283-289
    • /
    • 2009
  • This paper dealt with a statistical analysis for evaluating the creep crack growth rate (CCGR) for Modified 9Cr-1Mo (ASTM Grade 91) steel. The CCGR data was obtained by the creep crack growth (CCG) tests conducted under various applied loads at $600^{\circ}C$. To obtain logically the B and q values used in the CCGR equation, three methods such as the least square fitting method (LSFM), the mean value method (MVM) and the probabilistic distribution method (PDM) were adopted and their CCGR lines were compared, respectively. In addition, a number of random variables were generated by using the Monte Carlo simulation (MCS), and the CCGR lines were predicted probabilistically. It was found that both the B and q coefficients followed a 2-parameter Weibull distribution well. In the case of the ranges of 10-90% for the probability variables, P(B, q), the CCGR lines were predicted. Fractographic study was conducted from the specimen after the CCG tests.

Progress in Si crystal and wafer technologies

  • Tsuya, Hideki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.13-16
    • /
    • 2000
  • Progress in Si crystal and wafer technologies is discussed on single crystal growth, wafer fabrication, epitaxial growth, gettering, 300 mm and SOI. As for bulk crystal growth, the mechanism of grown-in defects (voids) formation, the succes of grown-in defect free crystal growth technology and nitrogen doped crystal are shown. New wafer fabrication technologies such as both-side mirror polishing and etchingless process have been developed. The epitaxial growth of SiGe/Si heterostructure for high speed bipolar device is treated. Gettering technology under low temperature process such as RTP is important, and also it is shown that IG effect for Ni could be predicted using computer simulation of precipitate density and size. The development of 300 mm wafer and SOI has made progress steadily.

  • PDF

A Simulation Study on the Improvement of Lighting Condition on Sidewalks Considering the Type and Growth of Roadside Trees (가로수의 유형 및 성장을 고려한 보행로 조명환경 개선에 관한 시뮬레이션 연구)

  • Lee, Jong-Sung;Lee, Seok-Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.93-103
    • /
    • 2013
  • In recently, a growing concern for the health of urban residents increased interests in a variety of outdoor activities simply be done in terms of cost and time. They are specially interested in low-impact and safe exercises around residential or working area. Walking is the one of easily doing exercise in daytime or nighttime near residential area. The sidewalks of boulevard near the residential area is the best place for exercise because of easy access and the green space with roadside trees. However, if the nighttime is not guaranteed the proper lighting condition, the possibility of exposure to crime and the threat to pedestrian safety can be increased. Because roadside trees are one of the potential obstacle for lighting condition, supplementary lightings are important to mitigate interruption for safety. To meet such a need, the purpose of this study is to propose a simulation approach which improves lighting condition on sidewalks of boulevard with variety of roadside trees. To do so, the simulation approach is applied for analyzing the interrupted condition by classified five standard types of roadside trees considering the growth of them and finding optimal layout of supplementary luminaires by lighting types. The results of this approach shows that it is useful for assessing the safety of pedestrian in nighttime.

A Simulation Model for the protein Deposition of Pigs According to Amino Acid Composition of Feed Proteins (사료의 아미노산 조성에 따른 돼지의 단백질 축적을 나타내는 수치모델)

  • 이옥희;김강성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.178-190
    • /
    • 1999
  • This study was conducted to develop a simulation model for the growth dynamics of pigs and to describe quantitatively protein deposition depending on the amino acid composition of feed protein. In the model it is assumed that the essential processes that determine the utilization of feed protein in the whole body are protein synthesis, breakdown of protein, and oxidation of amino acid. Besides, it is also assumed that occurrence of protein deposition depends on genetic potential and amino acid composition of feed protein. The genetic potential for the protein deposition is the maximum capacity of protein synthesis, being dependent on the protein mass of the whole body. To describe the effect of amino acid composition of feed on the protein deposition, a factor, which consist of ten amino acid functions and lie between 0 and 1, is introduced. Accordingly a model was developed, which is described with 15 flux equations and 11 differential equations and is composed of two compartments. The model describes non linear structure of the protein utilization system of an organism, which is in non steady state. The objective function for the simulation was protein deposition(g/day) cal culated according to the empirical model, PAF(product of amino acid functions) of Menke. The mean of relative difference between the simulated protein deposition and PAF calculated values, lied in a range of 11.8%. The simulated protein synthesis and breakdown rates(g/day) in the whole body showed a parallel behavior in the course of growth.

  • PDF

Novel Phase States in Highly Charged Colloidal Suspensions

  • Terada Y.;Muramoto K.;Tokuyama M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.19-20
    • /
    • 2003
  • Brownian-dynamics simulation on highly charged colloidal suspensions is performed by employing Tokuyama effective force recently proposed. The radial distribution function suggests that there exist three novel phases, a gas phase, a liquid droplet phase, and a face-centered cubic (FCC) crystal droplet phase, depending on the minimum values of that potential. The dynamics of droplet growth is also investigated both in liquid droplet phase and in crystal droplet phase. Thus, different types of characteristic growth stages are found.

  • PDF