• Title/Summary/Keyword: growth simulation

Search Result 1,085, Processing Time 0.025 seconds

Characteristics of Parameters for the Distribution of fatigue Crack Growth Lives wider Constant Stress Intensity factor Control (일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성)

  • 김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • The characteristics of the parameters for the probability distribution of fatigue crack growth life, using the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length equals the number of cycle curves that are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratios of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Wiubull,, showing a slight dependence on specimen thickness and stress intensity level. The shape parameter, $\alpha$, does not show the dependency of thickness and stress intensity level, but the scale parameter, $\beta$, and location parameter, ${\gamma}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

Finite Element Simulation of Fatigue Crack Growth: Determination of Exponent m in Paris Law (피로균열성장의 유한요소 시뮬레이션: Paris 법칙의 지수 m의 결정)

  • Chu, Seok-Jae;Liu, Cong-Hao
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.713-721
    • /
    • 2012
  • The finite element simulations of fatigue crack growth are carried out. Using only the mechanical properties usually obtained from the tensile test as input data, we attempted to predict the fatigue crack growth behavior. The critical crack opening displacement is determined by monitoring the change in displacements at the node close to the crack tip. Crack growth is simulated by debonding the crack tip node. The exponent in the Paris law was determined and compared to the published exponent. Plotting with respect to the effective stress intensity factor range yielded more consistent results.

Characteristics of Parameters for the Distribution of Fatigue Crack Growth Lives under Constant Stress Intensity Factor Control (일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성에 관하여)

  • Kim, Seon-Jin;Kim, Young-Sik;Jeong, Hyeon-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.301-306
    • /
    • 2002
  • The characteristics of parameters for the probability distribution of fatigue crack growth lives by the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length - the number of cycles curves are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratio of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth lives seems to follow the 3-parameter Wiubull and shows a slight dependence on specimen thickness and stress intensity level. The shape parameter, ${\alpha}$, does not show the dependency of thickness and stress intensity level, but the scale parameter, ${\beta}$, and location parameter, ${\upsilon}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

  • PDF

The Onset and Growth of the Buoyancy-driven Fingering Driven by the Irreversible A+B→C Reaction in a Porous Medium: Reactant Ratio Effect

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.138-151
    • /
    • 2021
  • The effect of a reactant ratio on the growth of a buoyancy-driven instability in an irreversible A+B→C reaction system is analyzed theoretically and numerically. Taking a non-stoichiometric reactant ratio into account, new linear stability equations are derived without the quasi-steady state assumption (QSSA) and solved analytically. It is found that the main parameters to explain the present system are the Damköhler number, the dimensionless density difference of chemical species and the ratio of reactants. The present initial grow rate analysis without QSSA shows that the system is initially unconditionally stable regardless of the parameter values; however, the previous initial growth rate analysis based on the QSSA predicted the system is unstable if the system is physically unstable. For time evolving cases, the present growth rates obtained from the spectral analysis and pseudo-spectral method support each other, but quite differently from that obtained under the conventional QSSA. Adopting the result of the linear stability analysis as an initial condition, fully nonlinear direct numerical simulations are conducted. Both the linear analysis and the nonlinear simulation show that the reactant ratio plays an important role in the onset and the growth of the instability motion.

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.

Evaluation of climate change on the rice productivity in South Korea using crop growth simulation model

  • Lee, Chung-Kuen;Kim, JunHwan;Shon, Jiyoung;Yang, Won-Ha
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.16-18
    • /
    • 2011
  • Evaluation of climate change on the rice productivity was conducted using crop growth simulation model, where Odae, Hwaseong, Ilpum were used as a representative cultivar of early, medium, and medium-late rice maturity type, respectively, and climate change scenario 'A1B' was applied to weather data for future climate change at 57sites. When cropping season was fixed, rice yield decreased by 4~35% as climate change which was caused by poor filled grain ratio with high temperature and low irradiation during grain-filling. When cropping season was changed, rice yield decreased by only 0~5% as climate change which was caused poor filled grain ratio with low irradiation during grain-filling period. However, this irradiation decline was less than when cropping season was fixed. Therefore, we need to develop rice cultivars resistant to low irradiation which can maintain high filled grain ratio under poor irradiation condition, and late maturity rice cultivars whose growing period is longer than the present medium-late maturity type.

  • PDF

New Bubble Size Distribution Model for Cryogenic High-speed Cavitating Flow

  • Ito, Yutaka;Tomitaka, Kazuhiro;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.700-710
    • /
    • 2008
  • A Bubble size distribution model has been developed for the numerical simulation of cryogenic high-speed cavitating flow of the turbo-pumps in the liquid fuel rocket engine. The new model is based on the previous one proposed by the authors, in which the bubble number density was solved as a function of bubble size at each grid point of the calculation domain by means of Eulerian framework with respect to the bubble size coordinate. In the previous model, the growth/decay of bubbles due to pressure difference between bubble and liquid was solved exactly based on Rayleigh-Plesset equation. However, the unsteady heat transfer between liquid and bubble, which controls the evaporation/condensation rate, was approximated by a theoretical solution of unsteady heat conduction under a constant temperature difference. In the present study, the unsteady temperature field in the liquid around a bubble is also solved exactly in order to establish an accurate and efficient numerical simulation code for cavitating flows. The growth/decay of a single bubble and growth of bubbles with nucleation were successfully simulated by the proposed model.

  • PDF

Development and Use of Digital Climate Models in Northern Gyunggi Province - II. Site-specific Performance Evaluation of Soybean Cultivars by DCM-based Growth Simulation (경기북부지역 정밀 수치기후도 제작 및 활용 - II. 콩 생육모형 결합에 의한 재배적지 탐색)

  • 김성기;박중수;이영수;서희철;김광수;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • A long-term growth simulation was performed at 99 land units in Yeoncheon county to test the potential adaptability of each land unit for growing soybean cultivars. The land units for soybean cultivation(CZU), each represented by a geographically referenced land patch, were selected based on land use, soil characteristics, and minimum arable land area. Monthly climatic normals for daily maximum and minimum temperature, precipitation, number of rain days and solar radiation were extracted for each CZU from digital climate models(DCM). The DCM grid cells falling within a same CZU were aggregated to make spatially explicit climatic normals relevant to the CZU. A daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CROPGRO-soybean model suitable for 2 domestic soybean cultivars were derived from long-term field observations. Three foreign cultivars with well established parameters were also added to this study, representing maturity groups 3, 4, and 5. Each treatment was simulated with the randomly generated 30 years' daily weather data(from planting to physiological maturity) for 99 land units in Yeoncheon to simulate the growth and yield responses to the inter-annual climate variation. The same model was run with input data from the Crop Experiment Station in Suwon to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for evaluation. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific cultivar. A computer program(MAPSOY) was written to help utilize the results in a decision-making procedure for agrotechnology transfer. transfer.

Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

  • Murallidharan, Janani;Giustini, Giovanni;Sato, Yohei;Niceno, Bojan;Badalassi, Vittorio;Walker, Simon P.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.859-869
    • /
    • 2016
  • Component-scale modeling of boiling is predominantly based on the Eulerian-Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

Fatigue Crack shape Variations by a Residual Stress and Fatigue Life Predition (잔류응력에 의한 피로균열면 형상변화 및 수명예측)

  • 강용구;서창민;박원종
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.68-78
    • /
    • 1993
  • Fatigue crack shape variation by a residual stress during crack growth and life predition are studied. An analytical method is presented to predict the influence of a residual stress due to heattreatment on crack shape variations. Computer simulation results using this me thod are graphically shown that crack growth rate to surface direction are decreased due to compressive residual stress exisiting in surface area. These results are commpared with experimental results. The fatigue life is also predicted by computer simulation of crack aspect ratio variation which is based on the surface crack length increment per unit cycle calculated from a-N diagram. Predited life is about 12 percent lower than experimental life.

  • PDF