• 제목/요약/키워드: growth regulator

검색결과 606건 처리시간 0.026초

Roles of Phosphatidylinositol 3-Kinase(PI3K) and Rac1

  • Shin, Il-Chung;Kim, Seon-Hoe;Moon, A-Ree
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.223.1-223.1
    • /
    • 2003
  • Many studies have identified the phosphatidylinositol 3-kinase (PI3K) as a key regulator for various cellular functions including cell survival, growth and motility. We have previously shown that H-ras, but not N-ras. induces invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype. In the present study, we wished to investigate the functional role of PI3K pathway in H-ra-induced invasive phenotype and motility of MCF10A cells. (omitted)

  • PDF

생장조절제 처리가 bentgrass 생육과 토양 수분이동에 미치는 영향 (Effect of Trinexapac-ethyl on the growth and changes of soil water content in bentgrass green)

  • 태현숙;고석구;안길만
    • 아시안잔디학회지
    • /
    • 제14권1호
    • /
    • pp.273-280
    • /
    • 2000
  • This study was conducted to evaluate an efficiency of plant growth regulator trinexapacethy(Primo) on the growth response of bentgrass and the change to soil water content in bentgrass green. Based on the results of the study, the following results were observed. 1. During four weeks after treatment, the visual color and turfgrass density of all the treated plots with trinexapac-ethyl(Primo) were more improved rather than without. Two treatments trinexapac-ethyl /$0.02mL\m^2$ and $0.04mL/\m^2$ were more favorable than other treatments. 2. It suggested that optimum rate to reduce the bentgrass growth and to increase the turfgrass density was the trinexapac-ethyl $0.04mL/\m^2$. 3. For six weeks after treatment, all treated plots were not significantly different (P<0.05) in turfgrass root length and root dry weitht. 4. In the treated plots with trinexapac-ethyl $0.04mL/\m^2$ for 25days in bentgrass green, soil water consumption was approximately 35% to 40% compare to the non-treated control.

  • PDF

갯방풍의 기내부정아 형성에 미치는 식물생정조절물질의 영향 (Influence of plant growth regulators on adventitious shoot formation of Glehnia littoralis Fr. Schmid)

  • 추병길;지윤의;문병철;최고야;이혜원;이아영;김호경
    • 한국한의학연구원논문집
    • /
    • 제14권1호
    • /
    • pp.113-116
    • /
    • 2008
  • Petiole explant of Glehnia littoralis Fr. Schmidt was in vitro cultured MS plant medium(DUCHEFA co.) supplemented with various plant growth regulators and examined to find out their optimum combination and concentration for plantlet regeneration. We investigated optimal condition for efficient plant regeneration through adventitious shoot formation on MS plant medium with various kinds of plant growth regulators. Embryogenic calli and adventitious shoot formation were greatly influenced by plant growth regulators. Embryogenic calli induction showed a good response on MS medium supplemented with NAA and BA than others. Especially, combination of 1.0 mg/L NAA and 0.5 mg/L BA on MS medium led to the greatest frequency in adventitious shoot. The results suggest that plant regulator selection be important factor to achieve an efficient regeneration.

  • PDF

Annual Bluegrass의 생물학적 특성과 방제 (Biological Characteristics and Control of Annual Bluegrass (Poa annua))

  • 이상국
    • Weed & Turfgrass Science
    • /
    • 제2권2호
    • /
    • pp.122-130
    • /
    • 2013
  • Annual bluegrass는 종자 생산능력이 뛰어나고 한번 조성이 되었을 때 그 분얼경과 지상부 생육이 뛰어나, 전 세계에 가장 널리 퍼져 서식하는 잔디 초종중의 하나이다. 또한 낮은 예초에 적응하는 능력과 조성이 되었을 때 균일성이 좋은 것으로 알려져 있다. Annual bluegrass의 지상부가 성장하기 가장 좋은 온도 범위가 $16-21^{\circ}C$이며 지하부 성장을 위한 최적의 온도범위는 $13-18^{\circ}C$로 고온과 저온에 취약한 초종이다. Annual bluegrass를 관리하기 위해서는 질소와 인산의 비교적 높은 시비량은 annual bluegrass의 확산을 촉진하며 반대로 낮은 시비량은 방제에 도움이 된다. 질소원으로 ammonium sulfate를 사용했을때 sulfate에 의해서 낮아진 토양 pH는 토양속에 존재하는 인이 용해되는 것을 감소시키고 annual bluegrass에 피해를 주는 aluminum의 양을 증가시켜 방제에 효과적이다. 관수는 light and frequent 보다는 deep and infrequent 관수방법이 방제에 도움이 되며 예초높이는 낮추고 예지물은 회수 하는 것이 annual bluegrass의 방제에 도움이 된다. 우리나라에서는 화학적 방제가 주를 이루고 있는데 발아전 처리제로서 prodiamine, bensulide, dithiopyr등이 있으며 발아후 처리제로는 ethofumesate, bisbyribac-sodium 그리고 최근에 연구가 되고 있는 mesotrione등이 있다. 발아전 혹은 발아후 처리제 이외에 생장조절제가 annual bluegrass 방제에 이용이 되고 있는데 paclobutrazol, flurprimidol 등이 있다. 우리나라에서 많이 사용이 되고 있는 생장조절제인 trinexapac은 오히려 여름철 annual bluegrass에 좋은 효과를 나타내고 있어 방제에 적합하지 않다. Annual bluegrass의 방제 효과를 극대화 하기 위해서는 관리적 방제와 화학적 방제의 두 가지 방법이 동시에 고려되어야 할 것이다.

C-형강 매트 저면관수 시스템을 이용한 분화 국화 재배 시 정식시기와 Daminozide 처리에 따른 초장 조절 (Height Control of Pot Chrysanthemum according to Daminozide Applications at Different Planting Period in C-Channel mat Irrigation System)

  • 강승원;서상규;이긍표;박천호
    • 화훼연구
    • /
    • 제19권1호
    • /
    • pp.30-36
    • /
    • 2011
  • 저면관수 방식인 C-형강 매트재배 시스템을 이용한 소형 분화 국화 재배 시 daminozide 농도에 따른 관주처리, 저면공급 및 정식시기에 따른 생장억제 효과의 지속력 및 저면공급의 처리효과를 구명하고자 본 실험을 수행하였다. 1차 정식처리구에서 $4,000mg{\cdot}L^{-1}$ 이상의 관주 처리구에서 초장신장 억제효과가 있는 것으로 나타났다. 그러나 2차 정식처리구의 경우 $5,000mg{\cdot}L^{-1}$에서 억제효과가 인정되었다. 분산분석 결과 정식시기도 초장 조절에 영향을 미치는 것을 알 수 있었다. 양액과 저면 공급한 처리구에서 daminozide가 화뢰의 형성, 생체중 및 건물중에 영향을 미치는 것으로 나타났다. 본 실험을 통하여 정식시기를 조절하여도 초장을 조절 할 수 있음을 알 수 있었으며, 따라서, 초장신장 억제를 위한 생장조절제 처리 시 정식시기와 공급방법의 다양화를 통해 분화 국화의 효율적인 초장 조절이 가능할 것이다.

Comparative Analysis of a Putative HLH Transcription Factor Responsible for Conidiation in Aspergillus Species

  • Abdo Elgabbar, Mohammed A.;Jun, Sang-Cheol;Kim, Jong-Hwa;Jahng, Kwang-Yeop;Han, Dong Min;Han, Kap-Hoon
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 추계학술대회 및 정기총회
    • /
    • pp.28-28
    • /
    • 2015
  • Asexual reproduction or conidiation in aspergilli is a primary mean to produce their progenies that is environmentally and genetically controlled tightly. Previously, intensive researches in the model fungus Aspergillus nidulans disclosed some genes playing important roles in asexual and sexual development. Among them, one gene encoding a putative helix-loop-helix (HLH) transcription factor, named ndrA, has been isolated and characterized as a downstream regulator of developmental master regulator NsdD. By using comparative genome search of A. niduans NdrA protein, its orthologues have been identified in A. fumigatus and A. flavus, respectively (AfudrnA and AfldrnA). Deletion of the ndrA genes in both Aspergillus species made them unable to produce the conidia yet abundant production of sclerotia in A. flavus. Complementation of ndrA deletion strains by intact ndrA ORFs has restored the conidiation as in the control strains. In A. fumigatus, ndrA deletion also resulted in loss of conidiation phenotype. Northern analyses showed that the ndrA genes in both Aspergillus species are highly expressed at the early stage of the conidiation. Interestingly, the ndrA genes were found to be necessary for the proper expression of brlA genes. Antifungal sensitivity test revealed that the ndrA genes might be responsible for the sensitivity or resistance to some antifungal agents. However, ndrA deletion did not greatly influence the growth in both strains. And the A. flavus ndrA gene did not affect the aflatoxin production. Taken together, ndrA genes in Aspergillus species could be an important positive regulator of conidiation under the regulation of the nsdD gene yet upstream of the brlA gene.

  • PDF

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo;Jung, Ye Jin;Kang, Bin Goo;Kim, Woo Taek
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.250-257
    • /
    • 2016
  • Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

Putative response regulator two-component gene, CaSKN7, regulate differentiation and virulence in Candida albicans

  • Lee, Jung-Shin;Minyoung Lim;Yim, Hyung-Soon;Kang, Sa-Ouk
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.50-50
    • /
    • 2003
  • We have identified and analysed a putative response regulator two-component gene (CaSKN7) from Candida albicans and its encoding protein (CaSkn7). CaSKN7 has an open reading frame of 1677bp. CaSKN7 encodes a 559 amino acid protein (CaSkn7) with an estimated molecular mass of 61.1 kDa. CaSKN7 is a homologue of a Saccharomyces cerevisiae SKN7 that is the regulator involved in the oxidative stress response. To study the role of CaSKN7, we constructed a CAI4-derived mutant strain carrying a homozygous deletion of the CaSKN7 gene. In the caskn7 disruptant cells, the formation of germ tube require shorter time than that in the congenic wild-type strain but the growth of mycelium delayed in liquid media. In contrast, the caskn7 disruptant cells attenuate the differentiation in solid media and the virulence in mouse model system. Expression level of hypha-specific and virulence genes - HYR1, ECE1, HWP1, and ALS1 - in the caskn7 disruptant cells increased as compared with that in the congenic wild-type strain in 10% serum YPD. Skn7 in 5. cerevisiae was found to bind the HSE element from the SSA promoter, Also, CaSkn7 contains heat shock factor DNA-binding domain and the promoters of these genes have HSE-like sties. Therefore these results show that CaSKN7 regulate the differentiation and virulence of C. albicans.

  • PDF

Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using Escherichia coli

  • Suk-Jin Oh;Hong-Ju Lee;Jeong Hyeon Hwang;Hyun Jin Kim;Nara-Shin;Sang-Ho Lee;Seung-Oh Seo;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.700-709
    • /
    • 2024
  • Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is economically beneficial. Because lignocellulosic biomass is a mixture rich in glucose and xylose, Escherichia coli, which prefers glucose, needs to overcome glucose repression for efficient biosugar use. To avoid glucose repression, here, we overexpressed a xylose regulator (xylR) in an E. coli strain expressing bktB, phaB, and phaC from Cupriavidus necator and evaluated the effect of xylR on PHB production. XylR overexpression increased xylose consumption from 0% to 46.53% and produced 4.45-fold more PHB than the control strain without xylR in a 1% sugar mixture of glucose and xylose (1:1). When the xylR-overexpressed strain was applied to sugars from lignocellulosic biomass, cell growth and PHB production of the strain showed a 4.7-fold increase from the control strain, yielding 2.58 ± 0.02 g/l PHB and 4.43 ± 0.28 g/l dry cell weight in a 1% hydrolysate mixture. XylR overexpression increased the expression of xylose operon genes by up to 1.7-fold. Moreover, the effect of xylR was substantially different in various E. coli strains. Overall, the results showed the effect of xylR overexpression on PHB production in a non-native PHB producer and the possible application of xylR for xylose utilization in E. coli.