• Title/Summary/Keyword: growth process

Search Result 6,166, Processing Time 0.03 seconds

A Study of Vision Algorithm Development for Growth Monitoring of Potato Microtubers (인공씨감자 생육상태 모니터링을 위한 화상처리 알고리즘 개발에 관한 연구)

  • Choi, J.W.;Chung, G.J.;Lim, S.J.;Choi, S.L.;Chung, H.;Nam, H.W.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.4
    • /
    • pp.373-380
    • /
    • 1998
  • The contribution of this paper is to provide the methods for the production automation of potato microtuber using the vision process in growth monitoring. The first method deals with computation for the growth density in the primary growth process. The second method addresses cognition process to identify the number and the volume of potato microtuber in secondary growth process. The third is to decide whether potato microtubers are infected by a virus or bacteria in growth process. The computation for the growth density in the primary growth process uses the method of Labeling. The second and third methods use template matching based on color patterns. With the developed method using vision process, this experiment is capable of discriminating weekly growth-rate in primary growth process, 85% cognition rate in secondary process and identifying whether there are infections. Therefore, we conclude that our experimental results are capable of growth monitoring for mass production of potato microtubers.

  • PDF

Magnetic Characterization of $YBa_2Cu_3Ox$ Single Crystal with a Variation of Growth Temperature (성장온도를 변화시킨 $YBa_2Cu_3Ox$ 단결정의 자기적 특성)

  • 한영희;성태현;한상철;이준성;김상준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.251-254
    • /
    • 1999
  • A new multi-seeding process for the growth of YBa$_2$Cu$_3$Oxx single crystals was developed. This process introduces an additional heating step to peritectic temperature and a subsequent slow cooling step to the growth temperature following the point when the crystals contacted. The crystal growth was resumed thereafter. The results obtained with this new process were compared with those of the conventional growth process, in which materials were only kept at the growth temperature. It was observed that the liquid phase between crystals were almost completely eliminated, but that Y2ll grains were grown during this new process. There was no significant improvement in trapped magnetic field over the conventional process, which is believed to be due to the cracks generated during the oxygen heat treatment or to the growth of YBa$_2$Cu$_3$Ox grains.

  • PDF

A Company Growth by the Dynamic Development Process of Technology -A Case Study on Hyundai Motor Company- (기술의 동태적 발전 과정을 통한 기업성장 -현대자동차 사례연구-)

  • 박종찬
    • Journal of Korea Technology Innovation Society
    • /
    • v.4 no.1
    • /
    • pp.32-48
    • /
    • 2001
  • Many Korean companies have grown up through technology import, learning, development, innovation and export. This process is called as "the dynamic development process of technology". Among many companies which have grown up by way of this process, the Hyundai Motor Company has shown a very remarkable achievement in technological growth. In short, this paper deals with the growth of Korean companies in the view of the dynamic development process of technology. As a case study, the paper analyzes the Hyundai Motor Company.r Company.

  • PDF

Thin film growth by charged clusters

  • Hwang, N.M.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.33-33
    • /
    • 1998
  • Invisible charged clusters are suggested to form in the gas phase and to become the growth unit in the thin film process. Similar suggestion had been made by Glasner el al. in the crystal growth of KBr and KCL in the solution where the lead ions were added. The charged cluster model, which was suggested in the diamond CVD process by our group, will be extended to the other thin film processes. It will be shown based on both the theoretical analysis and the experimental evidences that the charged clusters are formed in the gas phase and become the growth unit of the crystal in the thin film process.

  • PDF

On the Growth Process of Grains Dispersed in a Liquid Matrix

  • Kim, Doh-Yeon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1998.10b
    • /
    • pp.10-10
    • /
    • 1998
  • The growth process of solid grains in a liquid matrix is usually explained in tem1S of Ostwald ripening. The variation of growth (dissolution) rate as a function of grain size during Ostwald ripening predicted that the dissolution rate becomes very large as grain size decreases but the growth rate of a large grain is rather limited. Therefore. a rather uniform size distribution of grain size is maintained once after the quasi-equilibrium state is reached. Quite frequently, however, the exaggerated grain growth (EGG) is observed to occur: only a limited number of grains grow exceptionally. From the observation that the EGG occurs only for the faceted grains with apparently straight solid-liquid interfaces, the EGG is suggested to be the consequence of growth process controlled by 2-dimensional nucleation. In this study, the result by computer calculation on the grain growth process controlled by various mechanisms will be given.

  • PDF

Control of axial segregation by the modification of crucible geometry

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.191-194
    • /
    • 2008
  • We will focus on the horizontal Bridgman growth system to analyze the transport phenomena numerically, because the simple furnace system and the confined growth environment allow for the precise understanding of the transport phenomena in solidification process. In conventional melt growth process, the dopant concentration tends to vary significantly along the crystal. In this work, we propose the modification of crucible geometry for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution. Numerical analysis has been performed to study the transport phenomena of dopant impurities in conventional and proposed Bridgman silicon growth using the finite element method and implicit Euler time integration. It has been demonstrated using mathematical models and by numerical analysis that proposed method is useful for obtaining crystals with superior uniformity along the growth direction at a lower cost than can be obtained by the conventional melt growth process.

2-Step Shot Peening Process for the Improvement of Fatigue Crack Growth Properties (균열 특성 개선을 위한 2단 쇼트피닝 가공)

  • Lee, Seoung-Ho;Shim, Dong-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.67-72
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, crack growth tests are conducted on spring steel and shot peened specimens. And then the residual stresses and fractographs are examined. The crack growth equation that can describe the whole crack growth behavior is used to evaluate the experiment results. The results show that fatigue crack glows slowly in the shot peened specimen than in the unpeened. And in the case of the 2-step shot peened specimen the initial stress intensity factor range and the fracture toughness is higher than the unpeened specimen due to the compressive residual stress. Fractographs show that the compressive residual stress of the surface suppress the fatigue crack opening and consequently slow crack growth rates.

  • PDF

Melt-Crystal Interface Shape Formation by Crystal Growth Rate and Defect Optimization in Single Crystal Silicon Ingot (단결정 실리콘 잉곳 결정성장 속도에 따른 고-액 경계면 형성 및 Defect 최적화)

  • Jeon, Hye Jun;Park, Ju Hong;Artemyev, Vladimir;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.17-26
    • /
    • 2020
  • It is clear that monocrystalline Silicon (Si) ingots are the key raw material for semiconductors devices. In the present industries markets, most of monocrystalline Silicon (Si) ingots are made by Czochralski Process due to their advantages with low production cost and the big crystal diameters in comparison with other manufacturing process such as Float-Zone technique. However, the disadvantage of Czochralski Process is the presence of impurities such as oxygen or carbon from the quartz and graphite crucible which later will resulted in defects and then lowering the efficiency of Si wafer. The heat transfer plays an important role in the formation of Si ingots. However, the heat transfer generates convection in Si molten state which induces the defects in Si crystal. In this study, a crystal growth simulation software was used to optimize the Si crystal growth process. The furnace and system design were modified. The results showed the melt-crystal interface shape can affect the Si crystal growth rate and defect points. In this study, the defect points and desired interface shape were controlled by specific crystal growth rate condition.

Pore Distribution of Porous Silicon layer by Anodization Process

  • Lee, Ki-Yong;Chung, Won-Yong;Kim, Do-Hyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.494-496
    • /
    • 1996
  • The purpose of this study is to investigate the effect of process conditions on pore distribution in porous silicon layer prepared by electrochemical reaction. Porous silicon layers formed on p-type silicon wafer show the network structure of fine porse whose diameters are less than 100${\AA}$. In n-type porous silicon, selective growth was found on the pore surface by wet etching process after PR patterning. And numerical method showed high current density on the pore tip. With this result we confirmed that pore formation has two steps. First step is the initial attack on the surface and second step is the directional growth on the pore tip.

  • PDF

Effects of Pulse Modulations on Particle Growth m Pulsed SiH4 Plasma Chemical Vapor Deposition Process (펄스 SiH4 플라즈마 화학기상증착 공정에서 입자 성장에 대한 펄스 변조의 영향)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.173-181
    • /
    • 2006
  • We analyzed systematically particle growth in the pulsed $SiH_4$ plasmas by a numerical method and investigated the effects of pulse modulations (pulse frequencies, duty ratios) on the particle growth. We considered effects of particle charging on the particle growth by coagulation during plasma-on. During plasma-on ($t_{on}$), the particle size distribution in plasma reactor becomes bimodal (small sized and large sized particles groups). During plasma-off ($t_{off}$), there is a single mode of large sized particles which is widely dispersed in the particle size distribution. During plasma on, the large sized particles grows more quickly by fast coagulation between small and large sized particles than during plasma-off. As the pulse frequency decreases, or as the duty ratio increases, $t_{on}$ increases and the large sized particles grow faster. On the basis of these results, the pulsed plasma process can be a good method to suppress efficiently the generation and growth of particles in $SiH_4$ PCVD process. This systematical analysis can be applied to design a pulsed plasma process for the preparation of high quality thin films.

  • PDF