• Title/Summary/Keyword: growth point

Search Result 1,893, Processing Time 0.032 seconds

Structural characteristics and electronic properties of GaN with $N_V,\;O_N,\;and\;N_V-O_N$: first-principles calculations

  • Lee, Sung-Ho;Chung, Yong-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.192-195
    • /
    • 2007
  • Structural and electronic properties of bulk GaN with nitrogen vacancy($V_N$), oxygen substitution on nitrogen site($O_N$), and complex of nitrogen vacancy and oxygen substitution on nitrogen site($V_N-O_N$) were investigated using the first principle calculations. It was found that stability of defect formation is dependent on the epilayer growth conditions. The complex of $V_N-O_N$ is energetically the most favorable state in a condition of Ga-rich, however, oxygen substitution in nitrogen site is the most favorable state in N-rich condition. The electronic property of complex with negative charge states at $\Gamma$ point was changed from semiconductor to metal. On the contrary, the properties of nitrogen vacancy except for neutral charge state have shown the semiconductor characteristics at $\Gamma$ point. In the oxygen substitution on nitrogen site, the energy differences between conduction band minimum and Fermi level were smaller than that of defect-free GaN.

The Growth of Fatigue Cracks in Eutectic Solders

  • Lee, Seong-Min
    • Korean Journal of Materials Research
    • /
    • v.6 no.6
    • /
    • pp.561-567
    • /
    • 1996
  • The grain size effect on grain boyndary cracking in Pb-Sn eutectic during isothermal fatigue was investigated. Fatigue experiments were confined to two conditions : (1) 0.4% total strain range(approximetely 0.2% plastic strain range), 1.67$\times$10$^{-3}$/s frequency; and (2) 1.5% total strain rante(approximately 1.2% plastic strain range), 8.33$\times$10$^{-4}$/s frequency. Fatigue specimens were cross-sectioned to monitor the depth of crack growth continuosly and then, the maximum crack depths in units of the number of boundaries were plotted as functions of number of cycles for these two different strain ranges. The results revealed that the rate of crack growth(per cycle at fixed rate of crosshead motion) can be expressed as dc/dN=($\Delta$$\varepsilon$$_p$)$^n$c where n is typically 2, c is the crack length, $\Delta$$\varepsilon$$_p$ is the plastic strain range, and A is a "constant" that depends on whether the crack is deeper or shallower than its first triple point of the grain boundary, A decrdases by about a factor of three after the crack hits the first triple point, indecating that the fatigue crack is trapped at the triple point of the grain boundaries.

  • PDF

THE FORMATION MECHANISM OF GROWN-IN DEFECTS IN CZ SILICON CRYSTALS BASED ON THERMAL GRADIENTS MEASURED BY THERMOCOUPLES NEAR GROWTH INTERFACES

  • Abe, Takao
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.187-207
    • /
    • 1999
  • The thermal distributions near the growth interface of 150mm CZ crystals were measured by three thermocouples installed at the center, middle (half radius) and edge (10m from surface) of the crystals. The results show that larger growth rates produced smaller thermal gradients. This contradicts the widely used heat flux balance equation. Using this fact, it si confirmed in CZ crystals that the type of point defects created is determined by the value of the thermal gradient (G) near the interface during growth, as already reported for FZ crystals. Although depending on the growth systems the effective lengths of the thermal gradient for defect generation are varied, were defined the effective length as 10mm from the interface in this experiment. If the G is roughly smaller than 20C/cm, vacancy rich CZ crystals are produced. If G is larger than 25C/cm, the species of point defects changes dramatically from vacancies to interstitial. The experimental results which FZ and CZ crystals are detached from the melt show that growth interfaces are filled with vacancy. We propose that large G produces shrunk lattice spacing and in order to relax such lattice excess interstitial are necessary. Such interstitial recombine with vacancies which were generated at the growth interface, next occupy interstitial sites and residuals aggregate themselves to make stacking faults and dislocation loops during cooling. The shape of the growth interface is also determined by the distributions of G across the interface. That is, the small G and the large G in the center induce concave and convex interfaces to the melt, respectively.

  • PDF

Fracture Toughness and Crack Growth Resistance of the Fine Grain Isotropic Graphite

  • Kim, Dae-Jong;Oh, Seung-Jin;Jang, Chang-Heui;Kim, In-Sup;Chi, Se-Hwan
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Three point bending tests of single edge notched beam (SENB) specimens were carried out to evaluate the fracture behavior of the fine-grain isotropic nuclear grade graphite, IG-11. To measure the crack initiation point and the subsequent crack growth, the direct current potential drop (DCPD) method and a traveling microscope were used. The effects of test variables like initial crack length, specimen thickness, notch type and loading rate on the measured fracture toughness, $K_Q$, were investigated. Based on the test results, the ranges of the test variables to measure the reliable fracture toughness value were proposed. During the crack growth, the rising R-curve behavior was observed in IG-11 graphite when the superficial crack length measured on the specimen surface was used. The increase of crack growth resistance was discussed in terms of crack bridging, crack meandering, crack branching, microcracking and crack deflection, which increase the surface energy and friction force.

  • PDF

Fracture toughness of Low-carbon steel using J-intergral Principle (J-적분을 이용한 저탄소강의 파괴탄성치 결정)

  • ;;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.133-142
    • /
    • 1979
  • The fracture toughness of a hot rolled 100 mm thick SS41 steel plate was investigated for various crack ratios and thichnesses using the method of J-integral. The experiments were performed on an MTS machine and the crack initiation point was detected by using an electricl impedance method. The J-integral computed at the initiation point of the slow stable crack growth was almost constant within the range of crack ratios tested. The fracture toughness thus obtained was $J_{1c}/=27.0kgf/mm$ for specimens having fracture plane parallel to the rolling direction and 35.5kgf/mm for those perpendicular to the rolling direction. The J- integral computed at maximum load point was found to be unsuitable for fracture toughness determination, becaese of large variation depending on the crack ratio and thickness. It was also found that the slow stable crack growth increases as the thickness and/or crack ration of the specimen decrease.

Global Search for Optimal Geometric Path amid Obstacles Considering Manipulator Dynamics (로봇팔의 동역학을 고려한 장애물 속에서의 최적 기하학적 경로에 대한 전역 탐색)

  • 박종근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1133-1137
    • /
    • 1995
  • This paper presents a numerical method of the global search for an optimal geometric path for a manipulator arm amid obstacles. Finite term quintic B-splines are used to describe an arbitrary point-to-point manipulator motion with fixed moving time. The coefficients of the splines span a linear vector space, a point in which uniquely represents the manipulator motion. All feasible geometric paths are searched by adjusting the seed points of the obstacle models in the penetration growth distances. In the numerical implementation using nonlinear programming, the globally optimal geometric path is obtained for a spatial 3-link(3-revolute joints) manipulator amid several hexahedral obstacles without simplifying any dynamic or geometric models.

  • PDF

Dynamic Fatigue Behavior of Alumina Ceramics (알루미나 세라믹스의 동적피로거동)

  • 이홍림;이규형;박성은
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1053-1059
    • /
    • 1997
  • The dynamic fatigue behavior of alumina ceramics was observed at room temperature using four point bending system. The dynamic fatigue fracture strength and the dynamic fatigue lifetime were observed as a function of crosshead speed and the notch length. The notched specimen showed the smaller deviation in dynamic fatigue fracture strength than the unnotched specimen. The crack growth exponent n and the material constant A of the notched specimen could be represented as functions of the notch length. Fracture strength of the specimen calculated from the notch length, when the notch length was regarded as the crack size, was in good agreement with the measured 4 point bending strength. Fracture surface of the specimen showed the different fracture modes according to the crosshead speed. The four point flexural strength, fracture toughness, Young's modulus and Weibull modulus of the alumina were measured as 360 MPa, 3.91 MPa.m1/2, 159GPa, 17.64, respectively.

  • PDF

Long-term Growth Patterns and Determinants of High-growth Startups - Focusing on Korean Gazelle Companies during 2006-2020

  • Ko, Chang-Ryong;Lee, Jong Yun;Seol, Sung-Soo
    • Asian Journal of Innovation and Policy
    • /
    • v.10 no.3
    • /
    • pp.330-354
    • /
    • 2021
  • To know the long-term growth patterns and determinants of successful startups, 15-year (2006-2020) panel data of 252 companies that had a growth rate of over 20% every year in the last three years were used. In the first analysis, statistics on the period required to designate a gazelle company or listed on the stock market were examined. In addition, five long-term growth patterns were presented. In the panel analysis, the R&D intensity, operating profit ratio, size, and age of the company were pointed out as determinants of growth. The operating profit margin and R&D intensity have a positive effect on growth. Gibrat's law was not supported, but an inverted U-shape was observed. Jovanovic's law was confirmed. Although many studies tend not to point to profitability as a determinant of long-term growth, this is an important long-term growth factor of a company. The operating profit ratio was used in this study.

TGC-based Fish Growth Estimation Model using Gaussian Process Regression Approach (가우시안 프로세스 회귀를 통한 열 성장 계수 기반의 어류 성장 예측 모델)

  • Juhyoung Sung;Sungyoon Cho;Da-Eun Jung;Jongwon Kim;Jeonghwan Park;Kiwon Kwon;Young Myoung Ko
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2023
  • Recently, as the fishery resources are depleted, expectations for productivity improvement by 'rearing fishery' in land farms are greatly rising. In the case of land farms, unlike ocean environments, it is easy to control and manage environmental and breeding factors, and has the advantage of being able to adjust production according to the production plan. On the other hand, unlike in the natural environment, there is a disadvantage in that operation costs may significantly increase due to the artificial management for fish growth. Therefore, profit maximization can be pursued by efficiently operating the farm in accordance with the planned target shipment. In order to operate such an efficient farm and nurture fish, an accurate growth prediction model according to the target fish species is absolutely required. Most of the growth prediction models are mainly numerical results based on statistical analysis using farm data. In this paper, we present a growth prediction model from a stochastic point of view to overcome the difficulties in securing data and the difficulty in providing quantitative expected values for inaccuracies that existing growth prediction models from a statistical point of view may have. For a stochastic approach, modeling is performed by introducing a Gaussian process regression method based on water temperature, which is the most important factor in positive growth. From the corresponding results, it is expected that it will be able to provide reference values for more efficient farm operation by simultaneously providing the average value of the predicted growth value at a specific point in time and the confidence interval for that value.

GROWTH CHANCE IN THE LIPS OF THE ADOLESCENCE (from 8 to 16 years old) (청소년기 (8세에서 16세) 구순부 성장변화에 관한 누년적 연구)

  • Kim, Young-Hee;Row, Joon;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.26 no.2 s.55
    • /
    • pp.141-151
    • /
    • 1996
  • This study was undertaken to assess the effect of growth on the lips. Not only does lip growth influence the stability of such orthodontic treatment; it also directly influence facial profile, in which the lips have an important part. An understanding of the growth of lips is thus central to a consideration of profile change in orthodontics. By analyzing the serial lateral cephalograms of 15 male and 15 female of 8 years old to 16 yaers old who have normal occlusion. The result of this study were summerized as follows; 1. The largest growth increments in the length of the lips was mod age of 14 in both sexes. 2. The thickness of lips showed lager value for the male than that of the female in the most age group. The lagest growth increments at A point was occured age of 14, while Ls, Li, B point decreased after the age of 10-11. 3. The largest increase in the interval between crest of lower lip and edge of upper incisors was occured between ages 9 and 11 in males. The interval decreased slightly from 8 to 16 years in females. 4. The nasolabial angle decreased slightly from 8 to 16 years in both sexes. 5. The mentolabial angle showed large variation.

  • PDF