• 제목/요약/키워드: growth optimization

검색결과 634건 처리시간 0.023초

우리나라 농지의 기준증발산 격자자료 비교평가: 2016-2019년의 사례연구 (A Comparison between the Reference Evapotranspiration Products for Croplands in Korea: Case Study of 2016-2019)

  • 김서연;정예민;조수빈;윤유정;김나리;이양원
    • 대한원격탐사학회지
    • /
    • 제36권6_1호
    • /
    • pp.1465-1483
    • /
    • 2020
  • 증발산은 토양으로부터 발생하는 증발과 식물의 잎에서 발생하는 증산을 통칭하는 것으로, 물 수지, 가뭄, 작물생장, 기후변화 등의 모니터링에 있어 중요한 요소이다. 실제증발산은 식생 지표면의 물 소비량 또는 물 필요량이며 기준증발산에 작물계수를 곱하여 구하므로, 농지의 실제증발산을 구하기 위해서는 기준증발산의 계산이 정확히 이루어져야 한다. 격자형 기준증발산을 합리적으로 산출하기 위하여 그동안 많은 노력들이 있었고 복수의 산출물이 제공되고 있다. 이에 본 연구에서는 FAO56-PM, LDAPS, PKNU-NMSC, MODIS 기준증발산 산출물을 비교평가 함으로써, 우리나라처럼 복합적이고 이질적인 지표면에서 국지적 규모의 수문 및 농업 분야에 활용하기 위하여 어떤 기준증발산 산출 방법이 적합한지 살펴보고자 한다. 2016~2019년 3~11월의 1일 단위 자료와 8일 합성 자료를 기상청 현장관측치와 비교하여 지점별, 연도별, 월별로 분석하고 시계열변화를 검토한 결과, 기계학습을 통해 우리나라 농지에 대한 지역최적화가 상당히 잘 수행된 PKNU-NMSC 자료의 정확도가 월등히 높게 나타났으며, 시간과 장소에 상관없이 안정적인 산출이 이루어졌음을 확인하였다. 또한 본연구에서는 FAO56-PM, LDAPS, MODIS 산출물에 내재한 정확도 특성을 제시하였으며, 이는 기준증발산 자료 사용에 있어 중요한 정보가 될 것으로 기대한다.

유럽 내 탄소배출권거래제 도입에 따른 연결계통국가들의 전력교역 상황을 고려한 탄소배출량 결정요인분석 (Analysis of Determinants of Carbon Emissions Considering the Electricity Trade Situation of Connected Countries and the Introduction of the Carbon Emission Trading System in Europe)

  • 윤경수;홍원준
    • 자원ㆍ환경경제연구
    • /
    • 제31권2호
    • /
    • pp.165-204
    • /
    • 2022
  • 본 연구는 유럽지역 내 20개 연결계통국가들을 대상으로 2000년부터 2014년까지의 패널 자료를 구성하여 유럽이 2005년에 도입한 배출권거래시장을 기점으로 표본기간을 전과 후로 나누어 탄소배출량 결정요인을 이분산과 자기상관의 문제를 고려한 패널 GLS 방법으로 추정하였다. 종속변수로는 개별국가들에서의 탄소배출량이 사용되었으며, 설명변수로는 발전원별 발전량 비중, 이웃 국가들의 전력수급률, 자원보유국의 전력생산량, 발전원집중도, 산업부문에서의 1인당 총에너지 사용량, 전력가격에서의 세금, 1인당 전력 순수출량, 1인당 국토면적의 크기 등이 사용되었다. 추정결과에 의하면, 2005년을 기점으로 전과 후 모두에서 원전과 재생에너지 발전량 비중, 발전원집중도, 1인당 국토면적의 크기 등은 탄소배출량에 음(-)의 영향을 미치는 것으로 나타난 반면 석탄 발전량 비중, 이웃 국가들의 전력수급률, 자원보유국의 전력생산량, 산업부문에서의 1인당 총에너지 사용량 등은 탄소배출량에 양(+)의 영향을 미치는 것으로 나타났다. 이외 가스 발전량 비중과 전력가격에서의 세금은 2005년 이전에 대해서만 각각 탄소배출량에 음(-)과 양(+)의 영향을 미쳤으며, 1인당 전력 순수출량은 2005년 이후에 대해서만 탄소배출량에 음(-)의 영향을 미치는 것으로 나타났다. 본 연구의 결과는 저탄소 녹색성장으로의 탄소배출량 절감을 위한 거시적인 대응전략을 제시하며 전력교역시장을 고려한 중장기 전원믹스 최적화 방안과 그 역할에 대한 의미와 가치를 시사하고 있다.

사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석 (A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce)

  • 채승훈;임재익;강주영
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.53-77
    • /
    • 2015
  • 국내 모바일 커머스 시장은 현재 소셜커머스가 이용자 수 측면에서 오픈마켓을 압도하고 있는 상황이다. 산업계에서는 모바일 시장에서 소셜커머스의 성장에 대해 빠른 모바일 시장진입, 큐레이션 모델 등을 주요 성공요인으로 제시하고 있지만, 이에 대한 학계의 실증적인 연구 및 분석은 아직 미미한 상황이다. 본 연구에서는 사용자 리뷰를 바탕으로 모바일 소셜커머스와 오픈마켓의 사용자 이용경험을 비교 분석하는 탐험적인 연구를 수행하였다. 먼저 본 연구는 구글 플레이에 등록된 국내 소셜커머스 주요 3개 업체와 오픈마켓 주요 3개 업체의 모바일 앱 리뷰를 수집하였다. 본 연구는 LDA 토픽모델링을 통해 1만여건에 달하는 모바일 소셜커머스와 오픈마켓 사용자 리뷰를 지각된 유용성과 지각된 편리성 토픽으로 분류한 뒤 감정분석과 동시출현단어분석을 수행하였다. 이를 통해 본 연구는 국내 모바일 커머스 상에서 오픈마켓 이용자들에 비해 소셜커머스 이용자들이 서비스와 이용편리성 측면에서 더 긍정적인 경험을 하고 있음을 증명하였다. 소셜커머스는 '배송', '쿠폰', '할인'을 중심으로 서비스 측면에서 이용자들에게 긍정적인 이용경험을 이끌어내고 있는 반면, 오픈마켓의 경우 '로그인 안됨', '상세보기 불편', '멈춤'과 같은 기술적 문제 및 불편으로 인한 이용자 불만이 높았다. 이와 같이 본 연구는 사용자 리뷰를 통해 서비스 이용경험을 효과적으로 비교 분석할 수 있는 탐험적인 실증연구법을 제시하였다. 구체적으로 본 연구는 LDA 토픽모델링과 기술수용모형을 통해 사용자 리뷰를 서비스와 기술 토픽으로 분류하여 효과적으로 분석할 수 있는 새로운 방법을 제시하였다는 점에서 의의가 있다. 또한 본 연구의 결과는 향후 소셜커머스와 오픈마켓의 경쟁 및 벤치마킹 전략에 중요하게 활용될 수 있을 것으로 기대된다.

Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구 (A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm)

  • 정예림;김지희;유형선
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.1-21
    • /
    • 2020
  • 인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.