• Title/Summary/Keyword: growth medium optimization

Search Result 183, Processing Time 0.025 seconds

Optimization for Scenedesmus obliquus Cultivation: the Effects of Temperature, Light Intensity and pH on Growth and Biochemical Composition

  • Zhang, Yonggang;Ren, Li;Chu, Huaqiang;Zhou, Xuefei;Yao, Tianming;Zhang, Yalei
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.614-620
    • /
    • 2019
  • Microalgae have been explored as potential host species for biofuel production. Environmental factors affect algal growth and cellular composition. The effects of several key environmental factors, such as temperature, light, and pH of the medium on the growth and biochemical composition of Scenedesmus obliquus were investigated in this study. The highest growth rate of microalgae was observed at an optimal temperature of 25℃, 150 μmol/(m2·s) light intensity, and pH 10.0. The biochemical composition analysis revealed that the carbohydrate content decreased at lower (20℃) or higher temperature (35℃), whereas the protein and lipid contents increase at these temperatures. The fluctuation of light intensity significantly affected the contents of protein, carbohydrate, and lipid. The protein levels varied greatly when the pH of the medium was below 7.0. The carbohydrate and lipid contents significantly increased at pH above 7.0.

Development of Serum Free Medium and Optimization of Porcine Rotavirus Vaccine Production

  • Ko, Yun-Mi;Kim, Myoung-Hwa;Kim, Min-Young;Jeong, Yeon-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.207-209
    • /
    • 2005
  • Serum is a potential source of bacterial, mycoplasmal and viral contamination, and it has a possibility of the introduction of serum proteins, prion and pyrogens into the final vaccine product. For porcine Rotavirus vaccine production, it is necessary to develop serum free medium which do not cause those problems. A new serum free medium was developed for porcine Rotavirus vaccine based on DMEM, and the performance of developed serum free medium was evaluated in terms of Vero cell growth and Rotavirus vaccine production. The cell density, gown in serum free medium developed, was similar with that in serum supplemented medium. Also, it was higher than that in other commercially available serum free medium. The productivity of Rotavirus vaccine using serum free medium developed and optimum production strategies will be also discussed.

  • PDF

Medium optimization for growth of Bacillus amyloliquefaciens ISP-5 strain and evaluation of plant growth promotion using lettuce (Bacillus amyloliquefaciens ISP-5 균주의 배지 최적화 및 상추를 이용한 식물 생장 촉진 평가)

  • Kang-Hyun Choi;Sun Il Seo;Haeseong Park;Ji-hwan Lim;Pyoung Il Kim
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.356-361
    • /
    • 2022
  • Bacillus sp. is a useful strain for agriculture because it promotes plant growth and controls plant pathogens through a variety of mechanisms. In this study, we obtained a microbial preparation with a high number of viable cells by culturing newly isolated soil bacteria on an optimized medium. Subsequently, we applied this preparation to lettuce to enhance its growth and yield. First, B. amyloliquefaciens ISP-5 was isolated from soil. Next, optimization of culture medium was carried out using 5 L scale fermenters. When culturing B. amyloliquefaciens ISP-5 on this optimized medium, the number of viable cells was approximately 1000 times higher than that obtained from culturing on the commercial medium. Afterwards, the plant growth promotion properties of the ISP-5 strain were evaluated using lettuce as a test plant. Foliar spray treatment of lettuce was carried out by inoculating half the standard concentration suspension (0.5 × 107 cfu/ml). As a result, leaf width increased by 8.6% and leaf length increased by 12.9% compared to the control group. Live weight also increased by 24.2% and dry weight by 23.9%. Considering the results from field test, B. amyloliquefaciens ISP-5 showed potential as a plant growth-promoting bacteria.

Optimization of Culturing Conditions for Improved Production of Bioactive Metabolites by Pseudonocardia sp. VUK-10

  • Kiranmayi, Mangamuri Usha;Sudhakar, Poda;Sreenivasulu, Kamma;Vijayalakshmi, Muvva
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2011
  • The purpose of the present study was to investigate the influence of cultural and environmental parameters affecting the growth and bioactive metabolite production of the rare strain VUK-10 of actinomycete Pseudonocardia, which exhibits a broad spectrum of in vitro antimicrobial activity against bacteria and fungi. Production of bioactive metabolites by the strain was high the in modified yeast extract-malt extract-dextrose (ISP-2) broth, as compared to other tested media. Glucose (1%) and tryptone (0.25%) were found to be the most suitable carbon and nitrogen sources, respectively, for optimum production of growth and bioactive metabolites. Maximum production of bioactive metabolites was found in the culture medium with initial pH 7 incubated with the strain for four days at $30^{\circ}C$, under shaking conditions. This is the first report on the optimization of bioactive metabolites by Pseudonocardia sp. VUK-10.

Statistical Optimization of Solid Growth-medium for Rapid and Large Screening of Polysaccharides High-yielding Mycelial Cells of Inonotus obliquus (단백다당체 고생산성의 Inonotus obliquus 균주의 신속 개량을 위한 고체 성장배지의 통계적 최적화)

  • Hong, Hyung-Pyo;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.142-154
    • /
    • 2010
  • The protein-bound innerpolysaccharides (IPS) produced by suspended mycelial cultures of Inonotus obliquus have promising potentials as an effective antidiabetic as well as an immunostimulating agents. To enhance IPS production, intensive strain improvement process should be carried out using large amount of UV-mutated protoplasts. During the whole strain-screening process, the stage of solid growth-culture was found to be the most time-requiring step, thus preventing rapid screening of high-yielding producers. In order to reduce the cell growth period in the solid growth-stage, therefore, solid growth-medium was optimized using the statistical methods such as (i) Plackett-Burman and fractional factorial designs (FFD) for selecting positive medium components, and (ii) steepest ascent (SAM) and response surface (RSM) methods for determining optimum concentrations of the selected components. By adopting the medium composition recommended by the SAM experiment, significantly higher growth rate was obtained in the solid growth-cultures, as represented by about 41% larger diameter of the cell growth circle and higher mycelial density. Sequential optimization process performed using the RSM experiments finally recommended the medium composition as follows: glucose 25.61g/L, brown rice 12.53 g/L, soytone peptone 12.53 g/L, $MgSO_4$ 5.53 g/L, and agar 20 g/L. It should be noted that this composition was almost similar to the medium combinations determined by the SAM experiment, demonstrating that the SAM was very helpful in finding out the final optimum concentrations. Through the use of this optimized medium, the period for the solid growth-culture could be successfully reduced to about 8 days from the previous 15~20 days, thus enabling large and mass screening of high producers in a relatively short period.

Statistical Optimization of Medium Composition for Growth of Leuconostoc citreum

  • Kim, Hyun;Eom, Hyun-Ju;Lee, Jun-Soo;Seo, Jin-Ho;Han, Nam-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.68-72
    • /
    • 2005
  • Leuconostoc citreum is one of the representative strains of Leuconostoc spp. that show fast growth rates in fermented vegetables. Sequential experimental designs including the Plackett-Burman design, fractional factorial design, steepest ascent analysis, central composite design and response surface methodology were introduced tooptimize and improve the medium for Leuconostoc citreum. Fifteen medium ingredients were examined and glucose (20 g/l), yeast extract (12.5 g/l), sodium acetate trihydrate (6.12 g/l), potassium phosphate (42.55 g/l) and dibasic ammonium citrate (4.12 g/l)were chosen as the best components to give a critical and positive effect for cell-growth. The biomass was increased to 2.79 g/l (169%), compared to the 1.65 g/l in MRS medium.

  • PDF

Statistical Optimization of Medium Composition for Growth of Leuconostoc citreum

  • Kim, Hyun;Eom, Hyun-Ju;Lee, Jun-soo;Han, Jin-soo;Han, Nam-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.278-284
    • /
    • 2004
  • Leuconostoc citreum is one of the representative strains of Leuconostoc spp. that show fast growth rates in fermented vegetables. Sequential experimental designs including the Plackett-Burman design, fractional factorial design, steepest ascent analysis, central composite design and response surface methodology were introduced to optimize and improve the medium for L. citreum. Fifteen medium ingredients were examined and glucose ($20 g/\ell$), yeast extract ($12.5g/\ell$), sodium acetate trihydrate ($6.12g/\ell$), potassium phosphate ($42.55g/\ell$), and dibasic ammonium citrate ($4.12g/\ell$), were chosen as the best components to give a critical and positive effect for cell-growth. The biomass was increased to ($2.79g/\ell$), (169%), compared to the $1.65g/\ell$ in MRS medium.

Optimization of Culture Conditions for Production of Helicobacter pylori Adhesin Protein Genetically Linked to Cholera Toxin A2B in Escherichia coli JM101

  • Kim, Byung-Oh;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.162-166
    • /
    • 2001
  • Helicobacter pylori is a major cause of gastric-associated diseases. In our previous study, the Adhesin/CTXA2B was expressed as insoluble recombinant chimeric protein derived from the H. pylori adhesin genetically coupled to CTXA2B subunit in Escherichia coli. Since it is very important to optimize IPTG concentration, culture temperature and composition of medium to maximize cell growth and productivity, these conditional growth factors were determined for increasing the productivity of the expressed Adhesin/CTXA2B chimeric protein in Escherichia coli JM101 carrying pTEDhpa/ctxa2b. Our data demonstrate that optimal medium for increased production of chimeric protein was a YCP/Glu medium composed of 2% yeast extract, 1% casamino acid, phosphate solution [0.3% $KH_2P0_4$, 0.4% $Na_2HP0_4$, 0.25% ($NH_4)_2HPO_4$], and 0.5% glucose. In addition, optimal concentration of IPTG was 1 mM and culture temperature, $37^{\circ}C$.

  • PDF

Statistical optimization of phytol and polyunsaturated fatty acid production in the Antarctic microalga Micractinium variabile KSF0031

  • Kim, Eun Jae;Chae, Hyunsik;Koo, Man Hyung;Yu, Jihyeon;Kim, Hyunjoong;Cho, Sung Mi;Hong, Kwang Won;Lee, Joo Young;Youn, Ui Joung;Kim, Sanghee;Choi, Han-Gu;Han, Se Jong
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.175-183
    • /
    • 2022
  • Polar microorganisms produce physiologically active substances to adapt to harsh environments, and these substances can be used as biomedical compounds. The green microalga Micractinium variabile KSF0031, which was isolated from Antarctica, produced phytol, a natural antimicrobial agent. Furthermore, several polyunsaturated fatty acids (PUFAs), including omega-3, exhibit antioxidant properties. Here statistical methods (Plackett-Burman design and Box-Behnken design) were used to optimize the culture medium of KSF0031 to improve biomass production, and K2HPO4, MgSO4·7H 2O, and ammonium ferric citrate green (AFCg) were selected as significant components of the culture medium. Changes in the concentration of K2HPO4 and MgSO4·7H 2O as positive factors and AFCg as a negative factor affected cell growth to a remarkable degree. The biomass production in a 100 L culture using the optimized medium for 24 d at 18℃ was improved by 37.5% compared to that obtained using the original BG-11 medium. The quantities of PUFAs and phytol obtained were 13 mg g-1 dry cell weight (DCW) and 10.98 mg g-1 DCW, which represent improved yields of 11.70% and 48.78%, respectively. The results of this study could contribute to an improved production of phytol and fatty acids from Antarctic microalgae in the biomedical industry.

Development and culture optimization of mutants of Thiobacillus sp. IW for elimination of hydrogen sulfide

  • Kang, Sun-Chul;Lim, Kwang-Hee;Shin, Seung-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.465-467
    • /
    • 2005
  • UIW-10 mutant obtained by UV treatment using sulfur-oxidizing bacteria, Thiobacillus sp. IW was studied. The colony size of UIW-10 was found 2 $^{\sim}$ 3 times bigger in diameter than the parent colony on TAM medium. UIW-10 mutant growth was two times higher than parent strain at 6 h culture in liquid medium containing sulfides such as sulfur and sodium thiosulfate. Initial pH and temperature for the optimum growth of UIW-10 were 6.0 and $35-40^{\circ}C$, respectively. It was found that addition of 0.5% yeast extract and 0.5 to 2.0% tryptone as nitrogen sources and the constant agitation at 150 to 200 rpm had a positive effect and the growth of UIW-10 was increased.

  • PDF