• Title/Summary/Keyword: growth factor receptor

Search Result 817, Processing Time 0.032 seconds

Epidermal growth factor receptor overexpression and K-ras mutation detection in the oral squamous cell carcinoma (구강편평상피암종에서 상피성장인자 수용체의 과발현과 K-ras 유전자 변이)

  • Moon, Byeong-Chool;Han, Se-Jin;Jeong, Dong-Jun;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.5
    • /
    • pp.396-402
    • /
    • 2011
  • Introduction: Epidermal growth factor is a single-chain polypeptide consisting of 53 amino acids with potent mitogenic activity that stimulates the proliferation of a range of normal and neoplastic cells through an interaction with its specific receptor (epidermal growth factor receptor, EGFR). This interaction plays a key role in tumor progression including the induction of tumor cell proliferation. An increased EGFR copy number have been associated with a favorable response to EGFR tyrosine kinase inhibitors therapy. In contrast, K-ras mutations tend to predict a poor response to such therapy. The aim of this study was to determine the correlation between the clinicopathological factors and the up-regulation of EGFR expression and Kras mutations in oral squamous cell carcinoma. Materials and Methods: This study examined the immunohistochemical staining of EGFR, K-ras mutation detection with peptide nucleic acid (PNA)-based real-time polymerase chain reaction (PCR) clamping in 20 specimens from 20 patients with oral squamous cell carcinoma. Results: 1. In the immunohistochemical study of poorly differentiated and invasive oral squamous cell carcinoma, a high level of EGFR staining was observed. The correlation between immunohistochemical EGFR expression and histological differentiation, as well as the tumor size of the specimens was significant (Pearson correlation analysis, significance [r] >0.5, P<0.05). 2. In PNA-based real-time PCR clamping analysis, a K-ras mutation was not detected in all specimens. Conclusion: These findings suggest that the up-regulation of the EGFR may play a role in the progression and invasion of oral squamous cell carcinoma that is, independent of a K-ras mutation.

Polymorphism of Insulin-like Growth Factor 1 Receptor Gene in 12 Pig Breeds and Its Relationship with Pig Performance Traits

  • Wang, Wenjun;Ouyang, Kehui;Su, Xifan;Xu, Mingsheng;Shangguan, Xinchen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1541-1545
    • /
    • 2006
  • The polymorphism of insulin-like growth factor I receptor (IGFIR) gene in 12 pig breeds (total n = 593) was detected by PCR-SacII-restriction fragment length polymorphism and allele A (379 bp) or allele B (235 bp and 144 bp) observed. In the studied breeds, it was found that European pigs principally carried allele A, while Chinese native pig breeds principally carried allele B. In addition, the role of pig IGFIR was investigated in 156 Wanbai pigs and 212 Large Yorkshire pigs. Growth related variables including body weight at birth, 2-, 4- and 6-mo of age and backfat thickness and lean percentage estimated by ultrasonography at 6-mo of age were recorded in analyzing the association between IGFIR gene polymorphism and growth traits. AA-genotype pigs exhibited greater (p<0.05) body weights (BW) at birth, 2- and 6-mo of age, but not at 4-mo of age, than those of the BB-genotype in Wanbai and Yorkshire breeds. Moreover, in the Yorkshire breed, AA-genotype pigs had less backfat thickness (p<0.05) and greater lean percentage (p<0.01) than the BB genotype. Based on these results, it is necessary to do more studies on IGFIR before introducing the IGFIR locus into breeding programs.

Platelet-derived Growth Factor Signaling and Human Cancer

  • Yu, Jiu-Hong;Ustach, Carolyn;ChoiKim, Hyeong-Reh
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.49-59
    • /
    • 2003
  • Platelet-derived growth factor (PDGF) is a critical regulator of mesenchymal cell migration and proliferation. The vital functions of PDGFs for angiogenesis, as well as development of kidney, brain, cardiovascular system and pulmonary alveoli during embryogenesis, have been well demonstrated by gene knock-out approaches. Clinical studies reveal that aberrant expression of PDGF and its receptor is often associated with a variety of disorders including atherosclerosis, fibroproliferative diseases of lungs, kidneys and joints, and neoplasia. PDGF contributes to cancer development and progression by both autocrine and paracrine signaling mechanisms. In this review article, important features of the PDGF isoforms and their cell surface receptor subunits are discussed, with regards to signal transduction, PDGF-isoform specific cellular response, and involvement in angiogenesis, and tumorstromal interactions.

Fast Growing Furious Races for Targeting Fibroblast Growth Factor Receptors

  • Park, Daechan
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.789-791
    • /
    • 2022
  • Targeting fibroblast growth factor receptors (FGFRs) has been slow compared to other targeted cancer therapies for receptor tyrosine kinases, such as epidermal growth factor receptors. The low efficacy and variable response have limited the growth of FGFR inhibitors in clinical use. Nevertheless, recent systematic and genomic approaches have identified the biological conditions for effectively targeting FGFRs and can accelerate the development of targeted drugs. Under clinical and preclinical trials, the inhibitors started fast growing furious races to target FGFRs. Finally, FGFRs will be more actionable and targetable with more precise and effective drugs at the end of the race, passing the finish line.

Hormonal Regulation of Insulin-Like Growth Factor Binding Protein Secretion by a Bovine Mammary Epithelial Cell Line

  • Kim, W.Y.;Chow, J.C.;Hanigan, M.D.;Calvert, C.C.;Ha, J.K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.233-239
    • /
    • 1997
  • A mammary epithelial cell line (MAC-T) established as a model for lactation was utilized to identify and characterize effects of various hormones upon insulin-like growth factor binding protein secretion. Ligand and immunoblot analyses of conditioned media indicated that insulin-like growth factor binding protein-2 was secreted by MAC-T cells. Insulin-like growth factor-I stimulated insulin-like growth factor binding protein-2 secretion in a dose-dependent manner, but prolactin and bovine somatotropin did not alter insulin-like growth factor binding protein-2 secretion. Insulin increased and cortisol decreased insulin-like growth factor binding protein-2 secretion. Effects of insulin-like growth factor-I on insulin-like growth factor binding protein-2 secretion support previous studies using primary cultures of bovine mammary cells and bovine fibroblasts. Effects of cortisol and insulin on insulin-like growth factor binding protein-2 secretion may be explained by changes in protein synthesis. In addition, supraphysiological doses of insulin can cross-react with the insulin-like growth factor-I receptor and stimulate insulin-like growth factor binding protein-2 secretion. MAC-T cells provide a model system to study mechanisms that regulate local insulin-like growth factor-I bioactivity.

Immunocytochemical Studv of the Newe Growth Factor Receptor in the Neuron and its Organelles of the Adult Rat Basal Forebrain Nuclei (흰쥐 전뇌 기저부 핵의 신경세포와 그 세포내 소기관에서 신경성장인자 수용체에 대한 면역세포화학적 연구*)

  • 정영화
    • The Korean Journal of Zoology
    • /
    • v.36 no.2
    • /
    • pp.245-263
    • /
    • 1993
  • 신경성장인자 수용체(nerve growth factor receptor, HGFr)의 소재를 휜쥐 전뇌 기저부 핵들의 신경세포와 그 세포내 소기 관에서 연역세포화학적 방법으로 관찰하였다. NGFr에 면역반응을 보이는 신경세포들은 내측중격, 수직 및 수평대각선 브로카대, 거대세포 시삭전핵 그리고 Meynert 기저핵에는 다수 미상핵-피각과 복부담창구에는 소수 관찰 되었다 NGFr에 면역반응을 보이는 신경세포들은 형태학적으로 3가지 형 즉, 1) 난형(또는 원형). 2) 방추형, 3) 삼각형(또는 다각형)으로 구분되었다 내측중격은 주로 난형의 세포로 구성되었으며(91.2%), 수직 및 수평대각선 브로카대, 거대세포 시삭전핵 및 Meynert 기저 핵에는 난형의 세포가 높은 율로 구성되었으나, 방추형과 삼각형 세포들도 내측중격에서보다는 많았다 특히 복부담창구에는 다른 핵들에 비하여 방추형세포(25%)들이 높은 출현율을 보였다 일반적으로 이들 세포의 크기는 삼각형세포가 제일 컸으며, 방추형세포가 그 다음, 그리고 난형 세포가 제일 작았다 전자현미경적 관찰에서 0.05% triton X-100을 처리한 조직중 Meynert 기저핵을 관찰한 결과. Golgi체, multivesicular body 및 소포체들이 N6Fr에 면역반응을 보였으며. trion X-100을 처리하지 않은 조직에서는 단지 수평대각선 브로카대의 신경세포 원형질 막에서만 약한 면역반응을 보였다 위의 결과로 미루어 NGFr은 조연소포체에서 합성되어. Golgi체에서 농축되고, multivesicular body를 통하여 원형질막에 위치하게 되며, 원형질막에서 NGFr은 외래성의 NGF와 복합체를 형성한후, 궁극적으로는 Iysosome의 형태로 세포체 안으로 들어 가는 것으로 추정된다.

  • PDF

Ligand-based QSAR Studies on the Indolinones Derivatives as Inhibitors of the Protein Tyrosine Kinase of Fibroblast Growth Factor Receptor by CoMFA and CoMSIA

  • Hyun, Kwan-Hoon;Kwack, In-Young;Lee, Do-Young;Park, Hyung-Yeon;Lee, Bon-Su;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1801-1806
    • /
    • 2004
  • Ligand-based quantitative structure-activity relationship (QSAR) studies were performed on indolinones derivatives as a potential inhibitor of the protein tyrosine kinase of fibroblast growth factor receptor (FGFR) by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) implemented in the SYBYL packages. The initial X-ray structure of docked ligand (Su5402) to FGFR was used to minimize the 27 training set molecules using TRIPOS force field. Seven models were generated using CoMFA and CoMSIA with grid spacing 2 ${\AA}$. After the PLS analysis the best predicted CoMSIA model with hydrophobicity, hydrogen bond donor and acceptor property showed that a leave-one out(LOO) cross validated value $({r^2}_{cv})^$ and non-cross validated conventional value $({r^2}_{ncv})^$ are 0.543 and 0.938, respectively.

Insulin-Like Growth Factor-I-Induced Androgen Receptor Activation Is Mediated by the PI3K/Akt Pathway in C2C12 Skeletal Muscle Cells

  • Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.495-499
    • /
    • 2009
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR and IGF-I in skeletal muscle cells has not been previously examined. In this study, the role of PI3K/Akt on IGF-I-induced gene expression and activation of AR in skeletal muscle cells was investigated. C2C12 cells were treated with IGF-I in the absence or presence of inhibitors of PI3K/Akt pathway (LY294002 and Wortmannin). Inhibition of the PI3K/Akt pathway with LY294002 or Wortmannin led to a significant decrease in IGF-I-induced AR phosphorylation and total AR protein expression. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by LY294002 or Wortmannin. Confocal images showed that IGF-I-induced AR translocation from cytosol to nucleus was inhibited significantly in response to treatment with LY294002 or Wortmannin. The present results suggest that modulating effect of IGF-I on AR gene expression and activation in C2C12 mouse skeletal muscle cells is mediated at least in part by the PI3K/Akt pathway.

The effect of fibroblast growth factor receptor inhibition on resistance exercise training-induced adaptation of bone and muscle quality in mice

  • Cho, Suhan;Lee, Hojun;Lee, Ho-Young;Kim, Sung Joon;Song, Wook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.207-218
    • /
    • 2022
  • Aging in mammals, including humans, is accompanied by loss of bone and muscular function and mass, characterized by osteoporosis and sarcopenia. Although resistance exercise training (RET) is considered an effective intervention, its effect is blunted in some elderly individuals. Fibroblast growth factor (FGF) and its receptor, FGFR, can modulate bone and muscle quality during aging and physical performance. To elucidate this possibility, the FGFR inhibitor NVP-BGJ398 was administrated to C57BL/6n mice for 8 weeks with or without RET. Treatment with NVPBGJ398 decreased grip strength, muscular endurance, running capacity and bone quality in the mice. FGFR inhibition elevated bone resorption and relevant gene expression, indicating altered bone formation and resorption. RET attenuated tibial bone resorption, accompanied by changes in the expression of relevant genes. However, RET did not overcome the detrimental effect of NVP-BGJ398 on muscular function. Taken together, these findings provide evidence that FGFR signaling may have a potential role in the maintenance of physical performance and quality of bone and muscles.

Effect of Lycopene on the Insulin-like Growth Factor-I Receptor Signaling Pathway in Human Colon Cancer HT-29 Cells (인간의 대장암 HT-29 세포주에서 라이코펜이 Insulin-like Growth Factor-I Receptor Signaling Pathway에 미치는 영향)

  • ;;;Frederick Khachik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.437-443
    • /
    • 2003
  • Epidemiological data suggest that lycopene has anticancer activities in humans. Insulin-like growth factor-I receptor (IGF-IR) is a transmembrane tyrosine kinase that mediates the biological actions of IGFs and may play an active role in cancer progression. Because our previous in vitro studies have indicated lycopene inhibits HT-29 cell growth, the aim of this study was to determine whether lycopene induces apoptotic cell death and the inhibitory effect of lycopene on HT-29 cell growth is related to changes in IGF-IR levels and the receptor's intracellular signalling pathways. HT-29 cells were incubated for 4 days in serum-free medium in the presence of 0, 25, 50, or 100 $\mu$M lycopene, and the DNA fragmentation assay was performed. Cells treated with lycopene produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. HT-29 cells were cultured for 4 days in serum-free medium in the presence of 0~100 $\mu$M lycopene and IGF-I (10nM) was added for 0~60 minutes immediately prior to lysate preparations. Western blot analysis of total lysates revealed that lycopene decreased the levels of IRS-1, Akt, phosphatidylinositol 3-kinase (PI3K), and IGF-IR $\beta$-subunit, and increased the levels of the IGF-IR precursor dose dependently. Lycopene also decreased IGF-I-induced phosphorylation of IGF-IR$\beta$, IRS-1 and Akt, which were, at least in part, due to decreased expression of these proteins. These results suggest that lycopene induces apoptosis of HT-29 cells by inhibiting IGF-IR signaling thereby interfering with an IGF-II-driven autocrine growth loop, which is known to exist in this cell line.