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ABSTRACT Aging in mammals, including humans, is accompanied by loss of bone 
and muscular function and mass, characterized by osteoporosis and sarcopenia. 
Although resistance exercise training (RET) is considered an effective intervention, 
its effect is blunted in some elderly individuals. Fibroblast growth factor (FGF) and 
its receptor, FGFR, can modulate bone and muscle quality during aging and physical 
performance. To elucidate this possibility, the FGFR inhibitor NVP-BGJ398 was ad-
ministrated to C57BL/6n mice for 8 weeks with or without RET. Treatment with NVP-
BGJ398 decreased grip strength, muscular endurance, running capacity and bone 
quality in the mice. FGFR inhibition elevated bone resorption and relevant gene 
expression, indicating altered bone formation and resorption. RET attenuated tibial 
bone resorption, accompanied by changes in the expression of relevant genes. How-
ever, RET did not overcome the detrimental effect of NVP-BGJ398 on muscular func-
tion. Taken together, these findings provide evidence that FGFR signaling may have 
a potential role in the maintenance of physical performance and quality of bone and 
muscles.

INTRODUCTION
The ability to maintain bone and skeletal muscle quality is 

important for leading a long, healthy life. Bone and muscle mass 
and function are well-known predictors of health outcomes, such 
as the risk bone of fracture, osteoporosis, sarcopenia, and other 
muscular dystrophic diseases [1-4]. Of many musculoskeletal dys-
functions, sarcopenia, the aging-related loss of muscular strength 
and mass is well known and is correlated with loss of bone den-
sity [5]. Osteoporosis is characterized by an excessive loss of bone 

density [6]. Aging-related decreases in muscle and bone mass are 
accompanied by altered cellular conditions and increased inflam-
matory conditions [7-9]. Sarcopenia and osteoporosis share physi-
cal [10] and biochemical pathophysiological mechanisms [11].

Resistance exercise training (RET) is an effective measure to 
counter the functional loss of bone and muscle during aging [12]. 
However, previous studies have demonstrated that some indi-
viduals show blunted gain from training adaptation in terms of 
muscle mass and strength [13], and prevention of bone loss [14,15].

Fibroblast growth factor (FGF) and its receptor, FGFR, can 
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modulate muscle and bone quality because FGF2 has the poten-
tial to enhance bone formation via osteoblast-related mechanisms 
[16,17]. Stimulation with FGFR activates PLCγ/PKCα/Runx2 
signaling cascades and promotes osteoblast differentiation [17]. 
Bone cells secrete signaling molecules such as FGF23 and osteo-
calcin, which are speculated to act on skeletal muscle to modulate 
physical performance [18,19]. Previous studies have shown de-
creased expression of FGF and FGFR signaling with aging  [20-23]. 
Genetic knockdown of FGF-23 showed an aging-like phenotype 
[24] and the enhancement of FGFR signaling via FGF21 overex-
pression in a transgenic model increased the lifespan [25]. Despite 
evidence showing the importance of FGFR signaling in bone and 
muscle quality with aging, its role in physical performance and 
RET adaptation related to bone and skeletal muscle still remain 
unclear.

Therefore, our aim in this study was to investigate the role of 
FGFR signaling in physical performance using an FGFR antago-
nist NVP-BGJ398. Furthermore, we evaluated the role of FGFR 
signaling during 8 weeks of RET and demonstrated that inhibi-
tion of this signaling reduced muscle and bone quality, leading to 
decreased physical performance in mice, which was partly over-
come by the 8 weeks of RET.

METHODS

Animal

C57BL/6n mice (male, 8–9 weeks old) were purchased from 
Orient Bio Inc. (Stock name: C57BL/6NCrljBgi; Orient Bio Inc., 
Seongnam, Korea), and were managed under the principles es-
tablished by the college of veterinary medicine animal laboratory 
in Seoul National University (SNU). The mice were kept at 22°C, 
40%–50% humidity and on a 12:12-h light-dark cycle, fed with 
Rodent chow 5057 (Purina Korea, Seoul, Korea). The food intake 
was recorded in consequence day. All experimental methods were 
approved by the SNU Institutional Animal Care and Use Com-
mittees. The certification number was SNU-150820-4-6.

The animals were randomly assigned to each of the following 
groups: inhibition control group (Inh) and sham control group 

(Sham). At least 6–7 mice were conducted with experiment 
for each group. FGFR inhibitor NVP-BGJ398 (50 mg/kg body 
weight; Novartis, Basel, Switzerland) or sham (PEG-300/Glucose 
5%, 2:1 mix) were administered by oral gavage as previously de-
scribed [26]. The treatment was conducted three times per week, 
throughout the 8 weeks of experimental period.

Exercise apparatus and protocol

Duncan et al. [27]’s ladder training apparatus was adopted in 
this study for rodent resistance exercise training. Our protocol 
consists of 8 weeks, 10 sessions a day, and 3 days per week. Before 
the beginning of exercise training period, 1 week of adaptation 
was conducted without weight to become familiar with the climb-
ing ladder (1 m, 1 cm grid, 80-degree incline). Initial load of 50% 
of body weight was applied to every individual and added 3 g per 
every successive session. Next exercise trainings were started with 
50%–75% of maximal weight lifted from the previous exercise.

The only encouragement was a gentle finger tapping on the 
animal’s tail. When the rodents reached the top of the ladder, 
they were allowed to rest for 1–2 min. After the rest period, ad-
ditional 3 g was added on the previous weight, and the rodents 
were returned to the bottom of the ladder for the next session. If 
any mice were not able to climb with the attached load, one ad-
ditional minute was given for further rest then placed at the bot-
tom of ladder. This procedure was repeated until ten climbs were 
achieved. Every initial load was set at 50% of the maximal weight 
lifted of previous exercise training.

Grip strength test

Grip strength test was measured to illustrate the maximal force 
of grasping object and it is known to represent the strength of 
an individual. Animals were allowed to grasp a grid which is at-
tached to the force gauge and pulled until they became completely 
detached from the grid. The force was recorded for three times 
with at least two minutes of rest between every trial of measure-
ment. Only maximum force record was taken for the further 
analysis. The grip strength was measured with a grip strength 
meter (Model GS3; Bioseb, Chaville, France), and measurement 

Table 1. Primers for Real-time PCR using SensiFAST SYBR Lo-ROX Mix protocol

Gene Forward primer (5’-3’) Reverse primer (3’-5’)

Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA
Atrogin1 AGTGAGGACCGGCTACTGTG GATCAAACGCTTGCGAATCT
Murf1 CCTGCAGAGTGACCAAGGA GGCGTAGAGGGTGTCAAACT
FOXO1 GTGAACACCAATGCCTCACAC CACAGTCCAAGCGCTCAATA
Ocn CTGACAAAGCCTTCATGTCCAA GCGCCGGAGTCTGTTCACTA
Runx2 TTCTCCAACCCACGAATGCAC CAGGTACGTGTGGTAGTGAGT
Alp CCAACTCTTTTGTGCCAGAGA GGCTACATTGGTGTTGAGCTTTT
Opg ACCCAGAAACTGGTCATCAGC CTGCAATACACACACTCATCACT
Rankl CAGCATCGCTCTGTTCCTGTA CTGCGTTTTCATGGAGTCTCA
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method was adopted and modified from the one which was re-
ported previously [28]. The grip strength was measured weekly, 
after 24–48 h of the last exercise trial of the week. The animal 
grasped the steel grid with its four-limb, then its tail was gently 
pulled with the experimenter’s fingers. Maximum force (g) was 
measured and recorded on the instrument.

Muscular endurance capacity test

Hanging time was measured to represent the muscular endur-
ance capacity of a mouse. Animals were allowed to familiarize 
to the grid at least 1 min prior to the actual test. Every rodent 
conducted three trials and the maximum time was taken. Animal 
was placed on the 20 × 30 cm grid with 10 g weight attached on 
tail, and flipped over to measure the time until mouse falls. When 
the mouse fell within 10 sec, the animal was rested sufficiently 
and retested afterward. This was conducted 48 h after last inter-
vention of 8th week of training.

Aerobic endurance capacity test

Treadmill exhaustion test was performed to test endurance 
capacity of animal. Rodents were forced to run until complete 
exhaustion and time was measured for further analysis. For the 
analysis, Exer. 3/6 treadmill (Columbus Instruments, Columbus, 
OH, USA) was used and no incline was applied throughout the 
test. Mice were stimulated at the tail or posterior part of the body 
when they were reluctant to run. Mice were indicated to run for 
5 min with 5 m/min and thereafter speed was increased by 1 m/
min every minute until exhaustion. Exhaustion was defined 
when mice were unable to run although mice were continuously 
stimulated more than 15 sec.

RNA isolation and Real Time-PCR

Total RNA from mouse tissues and organ was extracted by 
using an RNA purification system (Introgen) following the 
manufacturer’s protocol. mRNA was reverse-transcribed using 

Fig. 1. Effect of FGFR inhibition on 
body composition and physical per-
formance. FGFR inhibitor treatment 
(NVP-BGJ398, 50 mg/kg b.w.) was ad-
ministrated daily up to 8 weeks through 
oral gavage on Inh group (n = 7) while 
Sham group (n = 7) was treated with 
same amount of vehicle (PEG 300: glu-
cose 5% 2:1 mix; n = 7). The b.w. were 
measured (A) weekly and (B) before sac-
rificed. Body composition analysis was 
taken before dissection and represented 
with (C) lean body mass and (D) body fat 
percentage of b.w. Physical performance 
test was conducted 48 h after interven-
tion. General phenotype tests are such 
as (E) grip strength, (F) hanging and (G) 
treadmill exhaustion test. All values are 
presented as mean ± SEM. FGFR, fibro-
blast growth factor receptor; b.w., body 
weight. *p < 0.05, **p < 0.01.
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AccuPower CycleScript RT PreMix (Bioneer, Daejeon, Korea) and 
RT-PCR was performed using SYBR Green and an ABI StepOne 
Real Time PCR instrument (Applied Biosystems, Cheshire, UK). 
Target gene expression was normalized with the control gene 
(Gapdh), and relative expression was quantified by the compara-
tive Ct method ∆∆Ct. The primer used for PCR are listed in Table 1.

Body composition analysis

Body composition was measured with Minispec live mice TD 
NMR analyzer (Bruker LF50, Ettlingen, Germany) [29]. This was 
conducted without anesthetics, and live mice were placed into 
cylindrical tube and inserted to scan for less than two minutes. 
After the scan procedure, mice were anesthetized with isoflurane 
gas inhalation for sample collection.

MicroCT and PetCT analysis

Bone quality was measured with in vivo NaF18-PET/CT 
(Positron Emission Tomography/Computed Tomography) by 
NanoPET/CT in vivo pre-clinical imager (Mediso, Budapest, 

Hungary). All procedures were conducted under supervision of 
the department of nuclear medicine in Seoul National University 
Bundang Hospital. All mice were anesthetized during scanning 
procedure with isoflurane gas inhalation.

Statistical analysis

Data organization and statistical analysis were performed using 
Microsoft Excel (Microsoft, Redmond, WA, USA) and SPSS 23.0 
software (IBM Co., Armonk, NY, USA). All data were represented 
as mean ± SEM. Significant differences between two groups were 
determined using two-tailed Student’s t-test. p-values lower than 
0.05 were considered they were significantly difference.

RESULTS

Effect of FGFR inhibitor on physical performance

Oral administration of the FGFR inhibitor NVP-BGJ398 (50 
mg/kg/day) for 8 weeks did not induce significant differences in 

Fig. 2. Effect of FGFR inhibition on bone quality and turnover markers. Micro/PET-CT mage scan was conducted after FGFR inhibitor (Inh) treat-
ment. (A) Micro-CT scan image of representative animals from each group and summary statistics of averaged HU value. (B) PET-CT scan image of 
representative animals from each group and summary statistics of averaged SUV (g/ml). Bone turnover markers were measured with qRT-PCR. Gene 
expression level of (C) osteogenic genes (Osteocalcin, Runx2, and Alp) and (D) osteoclastogenic genes (Opg and Rankl) was normalized with Gapdh. 
All values are presented as mean ± SEM. FGFR, fibroblast growth factor receptor; PET-CT, positron emission tomography/computed tomography; HU, 
Hounsfield unit; SUV, standardized uptake values. *p < 0.05, **p < 0.01.

B
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body weight (b.w.) between the vehicle-treated sham and inhibi-
tor-treated (Inh) groups (Fig. 1A). Nevertheless, there was a ten-
dency of a lower ∆b.w. in the Inh group than in the sham group 
(3.7 ± 0.45 g vs. 4.8 ± 0.36 g, n = 7 per group, p = 0.09, Fig. 1B). In 
addition, the analysis of body composition by using Minispec live 
mice TD NMR showed that the Inh group had lower percentages 
of lean body mass that those of the sham group (54.9 ± 0.94% vs. 
60.0 ± 0.71%, respectively, p < 0.01, Fig. 1C) as well as reduced 
percentages of fat mass (7.2 ± 0.64% vs. 11.1 ± 0.94%, respectively, 
p < 0.01, Fig. 1D).

To elaborate on the effects of FGFR inhibition on physical 
performance in the mice, we conducted grip strength, hang 
time, and exhaustion tests 48 h after the final treatment with 
either NVP-BGJ398 or vehicle control. Decreased grip strength 
was demonstrated in the Inh mice compared to that in the sham 
group (172.9 ± 5.34 g vs. 204.3 ± 2.42 g, respectively, p < 0.01, Fig. 
1E). Similar decreases were observed in the hang test (55.6 ± 19.87 
sec vs. 152.8 ± 38.64 sec, respectively, p < 0.05, Fig. 1F) as well as 
in the exhaustion test (747.9 ± 29.90 sec vs. 967.1 ± 23.42 sec, re-
spectively, p < 0.01, Fig. 1G).

Effects of FGFR inhibitor on bone density and 
metabolism

Since a close relationship exists between changes in grip 
strength and bone density [30,31], we further examined bone 
density and metabolic activity to understand the decrease in 
physical performance during FGFR signaling inhibition. The mi-
cro/PET CT in vivo scan analysis revealed decreased bone density 
in the Inh group compared to that in the sham group (Fig. 2A, 
left), which was quantified and summarized in Hounsfield unit 
(HU) (861.2 ± 50.82 HU vs. 1,124.9 ± 57.94 HU, respectively, p < 
0.05, Fig. 2A, right). Additionally, the Inh group exhibited and in-
crease in bone metabolism. The standardized uptake values (SUV) 
from the PET/CT imaging showed that the Inh mice exhibited 
increased bone metabolism compared to that in the sham group 
(2.0 ± 0.15 g/ml vs. 1.5 ± 0.14 g/ml, respectively, p < 0.05, Fig. 2B).

To explain the attenuated bone quality from micro-CT and 
NaF18-PET/CT scan data, we examined the expression of genes 
related to bone formation and resorption. The Osteocalcin (Ocn), 
and alkaline phosphatase (Alp) level increased significantly in the 
Inh mice compared to those in the sham group (Fig. 2C). Rankl, 

Fig. 3. Effect of FGFR inhibition on 
muscle quality and skeletal muscle 
atrophy markers. Muscle wet weight 
was adjusted with body weight (A) So-
leus, Gastrocnemius, Tibialis anterior and 
Extensor digitorum longus muscle. (B) 
Relative grip strength was adjusted by 
total lower limb muscle mass to evaluate 
the muscle quality. (C) mRNA expression 
level of gastrocnemius muscle was mea-
sured Atrophy markers were measured 
with qRT-PCR. Gene expression level of 
Atrogin1, Murf1, and Foxo1 was nor-
malized with Gapdh. All values are pre-
sented as mean ± SEM. FGFR, fibroblast 
growth factor receptor. *p < 0.05, **p < 
0.01.

A B

C
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a well-known osteoclastogenic marker, was markedly increased, 
while osteoprotegerin (Opg) expression was slightly decreased in 
the Inh group (Fig. 2C). These changes resulted in an increased 
Rankl-to-Opg ratio, suggesting upregulated osteoclastic activity 
in the tibial bone.

Effect of FGFR Inhibitor (NVP-BGJ398) on hindlimb 
skeletal muscle mass and atrophy markers

Limb skeletal muscle mass is a major factor that contributes to 
physical performance. The weights of the soleus, gastrocnemius, 
tibialis anterior and extensor digitorum longus were normal-
ized to b.w. and compared between the sham and Inh groups. 
However, the summarized results did not show any differences 
between the two groups (Fig. 3A). To assess the muscle quality, 
grip strength was adjusted based on the total mass of lower limb 
skeletal muscle. There was clear decrease in muscle quality with 
FGFR inhibition (Fig. 3B).

To assess the changes in muscle quality, we analyzed muscle 

mRNA expression using RT-qPCR. Gene expression levels of 
the gastrocnemius muscle were normalized to Gapdh. Atrogin1 
expression levels were elevated in the Inh group. The remaining 
marker genes tested did not differ between the two groups (Fig. 
3C).

Effects of RET on the reduced physical performance 
by FGFR inhibition

As expected, RET increased grip strength, adjusted the muscle 
wet weight of the hind limb, and hanging time in the sham mice 
(Supplementary Fig. 1). We. then investigated the effects of RET 
on growth over 8 weeks and physical performance in the Inh 
mice. Growth, that is, the tendency of b.w. gain, did not show any 
significant differences between the RET-combined sham and Inh 
groups. However, the body composition analysis revealed that the 
extent of decreased lean body mass and body fat percentages were 
attenuated with RET intervention; there was no significant differ-
ence in the two parameters between the two groups (Fig. 4C, D).

Fig. 4. Effect of RET during FGFR inhi-
bition. Physical performance was tested 
after 8 weeks of ladder climbing exercise 
with FGFR inhibitor treatment: Sham-
RET (PEG 300: glucose 5% 2:1 mix; n = 7) 
vs. Inh-RET (NVP-BGJ398, 50 mg/kg b.w.; 
n = 7). Body weight was measured (A) 
weekly and (B) before sacrificed. Body 
composition analysis was taken before 
dissection and represented with (C) lean 
body mass and (D) body fat percentage 
of b.w. Physical performance test was 
conducted 48 h after intervention. Gen-
eral phenotype tests are such as (E) grip 
strength, (F) hanging and (G) treadmill 
exhaustion test. All values are presented 
as mean ± SEM. RET, resistance exercise 
training; FGFR, fibroblast growth factor 
receptor; b.w., body weight. **p < 0.01.

A B
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Contrary to the beneficial effect of RET on the physical perfor-
mance of normal mice, the lower performance in the Inh group 
could not recover to the level of the sham group after 8 weeks of 
RET (Fig. 4E–G).

RET ameliorated increased bone resorption by FGFR 
inhibition

To investigate the effects of RET on reduced bone quality by 
FGFR inhibition, micro-CT and NaF18-PET/CT scan analyses 
were conducted 48 h after the final intervention. Eight weeks of 
RET failed to restore the decreased bone mineral density (Fig. 
5A), however, the bone turnover rate was rescued, as the averaged 
SUV did not differ between the sham and Inh groups combined 
with RET (sham + RET and Inh + RET, respectively, Fig. 5B). 
We further examined changes in gene expression related to bone 
formation and resorption. Consistent with the findings from the 
comparable bone metabolism between the sham + RET and Inh + 
RET groups (Fig. 5B), there was no difference in gene expression 
levels of Ocn and Alp between these two groups (Fig. 5C). Fur-
thermore, the osteoclastogenic makers Opg and Rankl showed 
similar expression between Sham + RET and Inh + RET mice (Fig. 
5D).

RET attenuated atrophy markers but failed to recover 
muscle quality

Similar to the findings of FGFR inhibition during normal 
growth, FGFR inhibition did not alter the changes in the lower 

limb skeletal muscle groups (Fig. 6A). Although the mRNA levels 
of atrophy markers were similar between the sham + RET and 
Inh + RET groups (Fig. 6C), this did not result in an improvement 
in muscle quality (Fig. 6B).

DISCUSSION
Our findings with the FGFR inhibitor NVP-BGJ398 in mice 

were characterized by reduced muscle strength and bone qual-
ity, while the mass of limb muscle was not affected. Decreased 
bone density is accompanied by reduced bone metabolism and 
decreased expression of osteogenic/osteoclastogenic genes. When 
the osteogenic process is increased, the gene expression ratio 
Rank:Opg in the tibia bone [32] represents the osteoclastogenic 
activity. Eight weeks of RET combined with NVP-BGJ398 (Inh 
+ RET) failed to recover muscle strength and bone density in the 
mice, whereas no differences were observed in the bone metabo-
lism rate and relevant genetic expression compared to sham + 
RET mice (Fig. 7).

Effects of FGFR inhibition with or without RET on b.w. 
and composition

Although statistically insignificant, the b.w. at week 8 of the 
experimental protocol was lower in the Inh group than that in 
the Sham group (p = 0.09). In addition, the comparison of body 
composition normalized to the b.w. (% lean body mass and % 
body fat) showed significantly lower values in the Inh group than 

Fig. 5. Effect of resistance exercise 
training during FGFR inhibition on 
bone quality and turnover markers. 
Micro/PET-CT mage scan was done after 
8 weeks of ladder climbing exercise with 
FGFR inhibitor treatment. (A) Micro-CT 
scan image of representative animals 
from each group and summary statistics 
of averaged HU value. (B) PET-CT scan 
image of representative animals from 
each group and summary statistics of 
averaged SUV (g/ml). Bone turnover 
markers were measured with qRT-PCR. 
Gene expression level of (C) osteogenic 
genes (Osteocalcin, Runx2, and Alp) and 
(D) osteoclastogenic genes (Opg and 
Rankl) was normalized with GAPDH. All 
values are presented as mean ± SEM. 
FGFR, fibroblast growth factor receptor; 
RET, resistance exercise training; PET-CT, 
positron emission tomography/com-
puted tomography; HU, Hounsfield unit; 
SUV, standardized uptake values. *p < 
0.05.

C D
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in the sham group (Fig. 1C, D). Interestingly, the parameters of 
body composition in the Inh + RET group were not different 
from those in the sham + RET group (Fig. 4C, D). Taken together, 
RET was effective in the maintenance and recovery of body com-
position and bone metabolism under chronic inhibition of FGFR 
signaling, whereas functional impairment of muscle endurance 
could not be prevented.

Interestingly, changes in atrophy-related genes were observed in 
the muscle. Increased atrophic marker genes are associated with 
loss of muscle mass, strength, and function [33-35]. Although the 
limb muscle weights were not decreased in the Inh group, the 
Atrogin1 levels were higher, which were similar to the levels in the 
sham + RET group (Figs. 3C and 6C). Since other relevant genes 
(Murf1 and Foxo1) were not changed by NVP-BGJ398 treatment, 
the sole change in Atrogin1 may imply a closer association with 
FGFR signaling than other genes relevant to the skeletal muscle. 
Although our data revealed an increase in Atrogin1expression, it 
did not provide a sufficient explanation of the decreased muscu-
lar endurance. Further mechanistic studies are required to under-
stand the Atrogin1 selective change caused by NVP-BGJ398.

The 8 weeks of RET was effective in improving lower limb 
muscle mass and function (Supplementary Fig. 1). However, the 
Inh + RET group did not show recovery of grip strength and 
hang time when compared with the Inh group (Fig. 4E–G). In 
some previous studies with aged individuals, RET effects were 
blunted, and this phenomenon was explained by either decreased 
ribosomal biogenesis or long-term depression of muscle protein 
synthesis due to impairment in growth factor responses [36,37]. 
It was reported that a longer period (12 weeks) of RET showed 
significantly greater muscle quality in young individuals than 
in those who were older [13], and a similar observation was also 
found when training was conducted with older human groups (> 
70 years) [38]. In addition, RET-induced hypertrophy of the plan-
taris muscle was less prominent in old mice than in young mice, 
and a microarray study showed relevant changes of ELF2 and 
mTOR signaling [36]. This evidence may partially explain the ef-
fects of blunted RET adaptation on muscle quality. However, to 
provide a proper explanation of skeletal muscle function, other 
factors (neuromuscular adaptation, muscular metabolism, and 
environmental condition) should be considered, which were not 

Fig. 6. Effect of resistance exercise 
training during FGFR inhibition on 
muscle quality and skeletal muscle 
atrophy markers. Muscle wet weight 
adjusted with body weight (A) Soleus, 
Gastrocnemius, Tibialis anterior and 
Extensor digitorum longus muscle. (B) 
Relative grip strength was adjusted by 
total lower limb muscle mass to evaluate 
the muscle quality. (C) mRNA expression 
level of gastrocnemius muscle was mea-
sured Atrophy markers were measured 
with quantitative RT-PCR. Gene expres-
sion level of Atrogin1, Murf1, and Foxo1 
was normalized with Gapdh. All values 
are presented as mean ± SEM. FGFR, 
fibroblast growth factor receptor; RET, 
resistance exercise training.**p < 0.01.

A B

C
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in the present study.

Effects of FGFR inhibition with or without RET on 
bone density and metabolism

Notably, the decreased bone density due to FGFR inhibition 
was maintained, whereas the increased bone resorption was re-
stored by RET (Fig. 5A, B). Previous reports have shown that b.w. 
and muscle strength are not always correlated with each other, 
whereas bone mineral density and muscle strength are highly 
correlated [39,40]. The present study also showed a decrease in 
grip strength and bone loss with upregulated osteoclastogenic 
genes in the Inh group (Fig. 3). However, the beneficial effects of 
RET in the Inh group were limited to bone metabolism without 
the recovery of muscle strength.

FGFR signaling is important for bone formation, and inhibi-
tion of FGFR can lead to growth retardation [41]. When FGFR1 
and FGFR2 are conditionally mutated or knocked out, humans 
and mice exhibited skeletal growth abnormality [42,43]. Further-
more, FGF2 knockout mice demonstrated neuronal defect, re-
duced blood pressure, and other abnormal phenotypes [44]. FGF/
FGFR signaling has been reported to control osteoblast activity by 
enhancing ERK1/2 signaling [45]. Therefore, it is not surprising 
that the pharmacological inhibition of FGFR affects bone density. 

However, the unaltered limb muscle weight and negligible effect 
on total b.w. were unexpected findings. We cautiously interpret 
these results to suggest that the amount and duration of NVP-
BGJ398 treatment may have been insufficient for the full in vivo 
effects in mice.

Increased bone turnover due to RET has been reported [46]. 
Mechanostat theory states mechanical loading transmits stimuli 
to osteoblasts and osteoclasts, which are involves in bone forma-
tion and resorption [47-49]. Furthermore, recent evidence sug-
gests that not only does mechanical stress acts on bone formation, 
but also that some myokines can be effective in enhancing bone 
quality [50]. Skeletal muscle secretes various growth factors in-
cluding insulin-like growth factor 1 (IGF-1), FGF2 and FGF21. 
IGF-1 and FGF2 enhance bone formation via elevating osteoblast 
proliferation [51,52]. Moderate intensity resistance exercises for 
12 weeks altered bone metabolism in a favorable manner, while 
no significant differences were observed in total and regional 
bone mineral density [53]. The current study showed that elevated 
Rankl:Opg in FGFR inhibition (Fig. 3D) was returned to normal 
levels (Fig. 5D) after 8 weeks of RET, while bone density still re-
mained low, suggesting putatively insufficient duration of RET 
for the full beneficial effects on the quality of bone under FGFR 
inhibition.

In conclusion, our data revealed a potential role for FGFR 

Fig. 7. Schematic diagrams of the blunted adaptation of resistance exercise training during FGFR inhibition. (A) RET generally provide ben-
eficial effect on bone and muscle quality. (B) FGFR inhibition with NVP-BGJ398 altered bone and muscle quality detrimentally. (C) RET adaptation on 
bone and muscle were blunted with FGFR inhibition. However, elevated bone resorption was improved. FGFR, fibroblast growth factor receptor; RET, 
resistance exercise training.

A

B

C
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signaling in physical performance related to muscle and bone 
function. Physical performance is important for quality of life 
and declines during aging process. Thus, the decrease in FGFR 
signaling may be related to the aging-dependent loss of physical 
performance. Furthermore, RET adaptation could be blunted by 
FGFR signaling inhibition, which may partially explain training 
adaptation during aging process. However, further analysis is 
required to clarify this relationship. As NVP-BGJ398 is not a spe-
cific inhibitor for certain FGFRs, and the presence of FGFR and 
FGF families is ubiquitous in whole organs in the body, specific 
knockout model may be required to test whether local inhibition 
changes whole body physiology.
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