• Title/Summary/Keyword: growth characterization

Search Result 1,681, Processing Time 0.027 seconds

GROWTH AND CHARACTERIZATION OF $La_3Ga_5SiO_{14}$ SINGLE CRYSTALS BY THE FLOATING ZONE METHOD

  • Yoon, Won-Ki;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.253-269
    • /
    • 1999
  • The development of telecommunication and information technology requires to develop new piezoelectric materials with small size, low impedance, wide pass band width and high thermal stability of frequency. Langasite (La3Ga5SiO14) single crystal has been researched substitute of quartz and LiNbO3 for the applications of SAW filter, BAW filter and resonator. Its single crystal growth has been carried out by Czochralski Method. So, in order to get single crystal with higher quality, in this study, lnagasite (La3Ga5SiO14) single crystal was grown by using Floating Zone (FZ) method and characterized. For the growth of langasite single crystals, the langasite powder was synthesized at 135$0^{\circ}C$ for 5hrs and the feed rod was sintered at 135$0^{\circ}C$ for 5hrs. The growing rate was 1.5mm/h and the rotation speed was 15 rpm for an upper rotation and 13 rpm for a lower rotation. In order to prevent the evaporation of gallium oxide, Ar and O2 gas mixture was flowed. The growth direction was analyzed by Laue back-scattered analysis. The composition of grown crystal was analyzed suing XRD and WDS. The electrical properties of grown crystal at various frequencies and temperature were discussed.

  • PDF

Single crystal growth of ZnWO4 by the Czochralski method and characterization (Czochralski법에 의한 ZnWO4 단결정 성장 및 특성분석)

  • Lim, Chang-Sung
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.103-108
    • /
    • 2010
  • Single crystals of $ZnWO_4$ with [100], [010] and [001] directions were successfully grown by the Czochralski method. The seed crystals for the single crystal growth of $ZnWO_4$ could be induced by the crystal growth using platinum wires applied by the capillary action from the melt. The growth conditions in each direction were investigated in terms of the variations of rotation speed, pulling rate and diameter of the grown crystals. The formation of cracking in the grown crystals during the cooling process could be prevented by annealing effect. The growth directions of the grown crystals were determined using Laue back reflection. The microscopic characteristics of the grown crystals in each direction were discussed, and their physical properties were evaluated for hardness, thermal expansion coefficients and dielectric constants.

Apatite Single Crystal Growth by FZ Method (FZ법에 의한 Apatite 단결정 성장)

  • 강승민;신재혁;한종원;최종건;전병식;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.2
    • /
    • pp.93-98
    • /
    • 1993
  • In the ternary system of $CaF_2-CaO-P_2O_5$. Apatite$(Ca_{10}(PO_4)_6F_2)$ single crystal having a congruent point was grown by FZ process. The atmospheric condition was kept by oxygen blowing. Adjusting the growth parameters of rotation rate, growth rate and gas amount, we tried to find the optimum growth condition. By partly substituting Ca as Co element, the absorption of infrared is increased and the color effect was observed. Using the Laue back reflection, XRD and FTIR analysis, the characterization of the crystal was carried out.

  • PDF

Identification of FM001 as Plant Growth-Promoting Substance from Acremonium strictum MJN1 Culture

  • JUNG, JAE-HAN;DONG-MIN SHIN;WOO-CHUL BAE;SOON-KWANG HONG;JOO-WON SUH;SANGHO KOO;BYEONG-CHUL JEONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.327-330
    • /
    • 2002
  • A plant growth-promoting substance, FM001, was isolated from the culture broth of Acremonium strictum MJN1. The purification steps included solvent extraction, adsorption chromatography using Diaion HP20, TLC on silica, and HLPC using a C-18 column. The purified FM001 enhanced rice seedling growth by $11.1\%\;and\;34.0\%$ of the dried weight of the shoots and roots, and also radish growth by $26.5\%\;and\;23.7\%$ of the top length and dried weight. FM001 also significantly promoted the growth of red pepper by increasing $32.7\%$ of fruit weight and $11.3\%$ as regards the height. FM001 consisted of C, H, O, N, and S, and its molecular weight was determined to be 537.78 Da. The structure of FM001 resembled brassinosteriods, and it would appear to have great potential as an effective bio-fertilizer.

Seeded Crystal Growth onto Enamel Mineral and Synthetic Hydroxyapatite in Dilute Supersaturated Solutions Containing Low Concentrations of Fluoride (불소농도가 Seeded Enamel Mineral과 합성 Hyproxyapatite에 Crystal 성장에 미치는 영향)

  • Lee, Chan-Young;Aoba, Takaaki
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.818-826
    • /
    • 1995
  • The present study was undertaken to investigate the crystal growth onto enamel mineral and synthetic hydroxyapatite seeds in media resembling the enamel fluid composition. Effects of fluoride at low concentrations on the precipitation were also examined in a benchtop crystal growth model adopting a miniaturized reaction column. X-ray diffraction and Fourier transform infrared spectroscopy(FTIR), as well as chemical analyses, were employed for characterization of both seed materials before and after experimentation. Remarkable findings were that (1) both biological and synthetic seeds at the same total surface areas yielded rather similar precipitation rates at all levels of fluoride concentration in solution and (2) the precipitation rate was accelerated in a manner depending on fluoride concentrations in media. FTIR differential analysis disclosed that the precipitating phase was characterized as poorly crystallized apatite, which incorporated subtle carbonate. Most of the fluoride ions in soution were readily incorporated into crystals. The overall results support the view that the seeded crystal growth model is of value to gain insight into the mechanism of enamel crystal growth under fluoride regimens.

  • PDF

Growth and Characterization of Vertically well Aligned Crbon Nanotubes on Glass Substrate by Plasma Enhanced Hot Filament Chemical Vapor deposition

  • Park, Chong-Yun;Yoo, Ji-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.210-210
    • /
    • 2000
  • Vertically well aligned multi-wall carbon nanotubes (CNT) were grown on nickel coated glass substrates by plasma enhanced hot filament chemical vapor deposition at low temperatures below 600$^{\circ}C$. Acetylene and ammonia gas were used as the carbon source and a catalyst. Effects of growth parameters such as pre-treatment of substrate, plasma intensity, filament current, imput gas flow rate, gas composition, substrate temperature and different substrates on the growth characteristics of CNT were systematically investigated. Figure 1 shows SEM image of CNT grown on Ni coated glass substrate. Diameter of nanotube was 30 to 100nm depending on the growth condition. The diameter of CNT decreased and density of CNT increased as NH3 etching time etching time increased. Plasma intensity was found to be the most critical parameter to determine the growth of CNT. CNT was not grown at the plasma intensity lower than 500V. Growth of CNT without filament current was observed. Raman spectroscopy showed the C-C tangential stretching mode at 1592 cm1 as well as D line at 1366 cm-1. From the microanalysis using HRTEM, nickel cap was observed on the top of the grown CNT and very thin carbon amorphous layer of 5nm was found on the nickel cap. Current-voltage characteristics using STM showed about 34nA of current at the applied voltage of 1 volt. Electron emission from the vertically well aligned CNT was obtained using phosphor anode with onset electric field of 1.5C/um.

  • PDF

Characterization of 6H-SiC Single Crystals grown by Sublimation Method

  • Kim, Hwa-Mok;Kang, Seung-Min;Kyung Joo;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.261-263
    • /
    • 1997
  • 6H-SiC single crystals were successfully grown by the self-designed sublimation apparatus and the optimum growth condition was established. The grown SiC crystals were about 33mm in diameter and 10mm in length. Carrier concentration and doping type of undopped 6H-SiC wafer grown by sublimation method were 1016∼1017/㎤ and n-type Crystallinity of grown 6H-SiC wafer was better than of Acheson seed by data of Raman spectroscopy and Double Crystal XRD. We continue to characterize the grown 6H-SiC wafer in more detail and so we will grow the high-quality 6H-SiC single crystal wafer.

  • PDF

Characterization of SiC/C Functionally Gradient Materials Growth Process by CVD Technique

  • Park, Chinho;Lee, Jinwook;Jung, Soon-Deuk;Yi, Sung-Chul;Kim, Yootaek
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.7-11
    • /
    • 1997
  • SiC/C functionally gradient material (FGMs) were formed on graphite substrates by hot-wall chemical vapor deposition (CVD) technique using the SiCl$_4$-C$_3$H8-H$_2$ chemistry. Thermochemical equilibrium calculations were carried out to investigate the deposition process. The effect of process variables on the deposition yield and the SiC/C ratio in deposited layers was studied in detail. Calculated results showed a reasonable agreement with the experiment in a qualitative sense. SiC/C FGMs with excellent mechanical and thermal properties could be successfully formed on graphite substrates by carefully controlling the compositions in the deposited layers.

  • PDF

Diagnostic and Therapeutic Implications of the Vascular Endothelial Growth Factor Family in Cancer

  • Riaz, Syeda Kiran;Iqbal, Yasmeen;Malik, Muhammad Faraz Arshad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1677-1682
    • /
    • 2015
  • Cancer progression is attained by uncontrolled cell division and metastasis. Increase in tumor size triggers different vascular channel formation to address cell nutritional demands. These channels are responsible for transferring of nutrients and gaseous to the cancer cells. Cancer vascularization is regulated by numerous factors including vascular endothelial growth factors (VEGFs). These factors play an important role during embryonic development. Members included in this group are VEGFA, VEGFB, VEGFC, PIGF and VEGFD which markedly influence cellular growth and apoptosis. Being freely diffusible these proteins act in both autocrine and paracrine fashions. In this review, genetic characterization these molecules and their putative role in cancer staging has been elaborated. Prognostic significance of these molecules along with different stages of cancer has also been summarized. Brief outline of ongoing efforts to target hot spot target sites against these VEGFs and their cognate limitations for therapeutic implications are also highlighted.

Characterization of Biological Treatment by an Isolated Phenol-Degrading Bacterium (페놀분해세균의 분리 및 생물학적 처리 특성)

  • 송형의;김진욱
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.54-62
    • /
    • 1998
  • 20 bacterial strains capable of growing on phenol minimal medium were isolated from soil and wastewater by the enrichment culture technique, and among them, one isolate which was the best in the cell growth was selected and identified as Bacillus sp. SH3 by its characteristics. Strain SH3 could grow with phenol as the sole carbon source up to 15 mM, but did not grow in minimal medium containing above 20 mM of phenol. The optimal conditions of temperature and initial pH for growth and phenol degradation were 30$^{\circ}$C and 7.5, respectively. This strain could grow on various aromatic compounds such as catechol, protocatechuic acid, gentisic acid, o-, m-, p-cresol, benzoic acid, p-hydroxybenzoic acid, anthranilic acid, phenyl acetate and pentachlorophenol, and the growth-limiting log P value of strain SH3 on organic solvents was 3.1. In batch culture, strain SH3 degraded 97% of 10 mM phenol in 48 hours. In continuous culture under the conditions of 20 mM of influent phenol concentration and 0.050 hr$^{-1}$ of dilution rate, the treatment rate of phenol was 94%.

  • PDF