• Title/Summary/Keyword: growing season

Search Result 1,006, Processing Time 0.028 seconds

Chemical properties of soybean-cultivated field soils (대두재배 농가포장 토양의 화학적 특성)

  • Yoo, Sun-Ho;Ro, Hee-Myeong;Lee, Sang-Ho;Kim, Chan-Sub
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.4
    • /
    • pp.275-280
    • /
    • 1990
  • In order to obtain the basic informations on the reasonable fertilization and soil management systems for a high soybean yield, both soybean leaves and soils were collected from 24 soybean-cultivated fields in central area of Korea, and analyzed. For this study, soybean leaves and soil were sampled together in July of 1988(growing season), and soil alone in October of 1988 (harvesting season) and April of 1989(sowing season) at each sampling site. The results might be summarized as follows: 1. The soil pH ranged between 4.8 and 6.8. and the pH after harvest decreased to 5.4 which compared with the pH 5.7 of growing season. 2. Both the 1N KCl extractable Al and the 1N $NH_4OAc$ extractable Al in soils were inversely correlated with the soil pH. the former concentration was negligible above pH 5.8. 3. The soil total-N and Bray 1-P after harvest were lower than those of growing season. The Bray 1-P's of sample soils were very high irrespective of sampling time. 4. The exchangeable Ca and Mg in soils even after harvest varied little whereas the exchangeable K decreased with time. 5. The N content in soybean leaves was not correlated with soil total-N, but highly correlated with the K content in soybean leaves. The Mg content in soybean leaves was also highly correlated with Ca content in suybean leaves and exchangeable Mg in soils.

  • PDF

Changes of Tree Growth and Fruit Quality of "Yumi" Peach under Long-Term Soil Water Deficit

  • Yun, Seok Kyu;Kim, Sung Jong;Nam, Eun Young;Kwon, Jung Hyun;Chung, Kyeong Ho;Choi, In Myung;Kim, Ghiseok;Shin, Hyunsuk
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.276-282
    • /
    • 2017
  • Purpose: This paper presents the effects of soil drought stress during the growing season and pre-harvest period on tree growth and fruit quality of "Yumi" peach, an early season cultivar. Methods: Soil drought stresses were treated with four levels of -30, -50, -60, and -70 kPa during long term (LT) and short term (ST). For LT treatments, soil water was controlled for nine weeks from May 1 to July 5, which was assumed as the full growing season. For ST treatments, soil water was controlled for four weeks from June 10 to July 5, which was assumed as the pre-harvest season. Tree growth and leaf photosynthesis were measured, and fruit characteristics such as fruit weight and diameter, soluble solid and tannin contents, and harvest date were investigated. Results: Soil water deficit treatments caused a significant reduction in tree growth, leaf photosynthesis, and fruit enlargement. LT water stress over -60 kPa during the full growing season caused significant reduction in tree growth, including shoot length, trunk girth, leaf photosynthesis, and fruit enlargement. ST water stress over -60 kPa during the pre-harvest period also induced significant reduction in leaf photosynthesis and fruit enlargement, while tree growth was not reduced. In terms of fruit quality, water stress over -50 kPa significantly reduced fruit weight, increased soluble solid and tannin contents, and delayed harvest time in both LT and ST treatments. Conclusions: As a result, it is assumed that LT water stress over -60 kPa can reduce both tree growth and fruit enlargement, whereas ST water stress over -50 kPa can reduce fruit enlargement without reducing tree growth. From an agricultural perspective, moderate water deficit like -50 kPa treatments could have positive effects, such increased fruit soluble solid contents along with minimal reduction in fruit size.

한국산의 죽류에 관한 연구(제육보) 산죽류의 번식에 관하여

  • 정현배
    • Journal of Plant Biology
    • /
    • v.7 no.2
    • /
    • pp.9-13
    • /
    • 1964
  • As to the up-lnd bamboos, I have reported, in my previous works, that Korea has two species in the genus of Pseudosasa, four in Pleioblastus, and other four in Sasa. In the present work, I dealt with Sasamorpha Purpurascens Nakai var. Borealis Nakai which proved the strongest vitality of all up-land bamboo yet found in various up-lands of Korea, and which might be most important from the utility view-point. This report is chiefly on its procreation. Sasamorpha Purpurascens Nakai var. Borealis Nakai can be found almost everywhere throughout the country, and its leaves and stems are much used in farms in various forms of manufacture. It is also welcomed as the feed for livestocks and as cover plants for aforestation, especially as the excellent means of errosion control on devastated hill sides. It is also widely accepted that it will provide, in the immediate future, abundant sources for the up-land bamboo pulp. As the first phase of my research plan on the subject, I undertook to determine the possible best way of its procreation, for which were included the experiments of inducing the growth of subterranean stems, the entire stand cutting, transplanting, reclaimed planting after burning etc. in order to observe the plant elongation, growing conditon, climatical effect etc. What has been fuond out so far given here as follows: 1) Of the various sections of the country, Mt. Odae area gives out the most excellent Sasamorpha Purpurascens Nakai var. Borealis Nakai(the leaf weight of which is 450 gr.) and Taekwanryong area comes the next class. This species can be transplanted anywhere in the South Korea. 2) The elongation of S.P. Nakai var. Borelais begins at around the middle of May and almost completely stops by the 20th of August. 3) The best studied transplanting season is supposed to be Feb. -April, for those transplanted during that period proved 100% of success. The next best transplanting season may be October. Rain fall does not have so much effect on transplanting as the growing season does. 4) In inducing the subterranean stems, the growing season can be ignored. The root expnsion is most animated during the months of April-June, the most active season for water absorption. Those stems induced during the winter proves more rapid growth. 5) The entire stand cutting shows greater growth than the reclaimed planting after burning and that, the growth is most vigorous during May-July, whereas during the hottest months of Aug-Sept. the growth shows only 5 cm. The new shoots grow slower both in the field of entire stand cutting and in the field of reclaimed planting after burning than in the otherwise fields.

  • PDF

Nitrate Movement in The Root Zone of Corn Fields with Different Tillage Systems (경운에 따른 옥수수 근권에서의 질산태질소의 이동양상)

  • Kim, Won-Il;Jung, Goo-Bok;Lee, Jong-Sik;Kim, Jin-Ho;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.38-45
    • /
    • 2006
  • Movement of nitrate ($NO_3-N$) through a soil profile under no tillage (NT) or conventional tillage (CT) practices was monitored to identify the effects of tillage systems on nitrate leaching and retention in the soil profile at two commercial farms in central Illinois from 1993 through 1994. Anhydrous ammonia was applied in the 1993 growing seasons, while a mixture of urea and ammonium nitrate solution (URAN) was applied in three separate applications during the spring and early summer of the 1994 season. $NO_3-N$ of each plot through a 100 cm soil depth was found to be significantly high around $20mg\;kg^{-1}$ soil in the early 1993 season. However, downward movement of $NO_3-N$ occurred during the growing season. At the end of growing season, Flanagan and Ipava soils generally retained more $NO_3-N$ through the soil profile for both the CT plots and the NT plots than the Saybrook and Catlin soils. However, there was no significant difference between the nitrate content of the two soil types in each year. $NO_3-N$ content in NT fields were slightly higher than that observed in CT fields throughout the season before harvest. It means that NT plots may reduce the nitrate leaching to the ground water.

The effect of plant spacing on several agronomic traits of a soybean variety under the tropical environment (열대환경하에 있어서 대두재식밀도가 각종형질에 미치는 영향)

  • Kwon, Shin-Han;Quyen, Nguyen H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.7 no.1
    • /
    • pp.133-137
    • /
    • 1969
  • This experiment was conducted to determine the optimum row width and plant spacing within row under the tropical environment for a leading soybean variety Palmetto and it was carried out at Eakmat Experiment Station in Vietnam. The experiments were arranged in a split plot design with four replications and the test was repeated twice in two years. Variations for seed yield due to the distance between rows were significant at 1 per cent level in 1967 test(dry season growing) and at 5 per cent level in 1968 test. Significant differences for plant height, lodging, maturity, number of branches per plant, and number of pods per plant due to the row width were not found in both tests, while significant differences in difference spacing within row was found in all traits studied. Interaction between width of row and spacing within row for seed yield and plant height were found at five percent level in 1967 test. These results indicate that close planting may increase in seed yield and plant height in both seasons, and decrease in loadging. From these studies, one could be understood that the plant population, particularly in dry season, plays decisive roles on seed yield in soybean culture, and the maximum plant height and minimum value of lodging index were also observed in closest spacing plots. The highest soybean yield in late planting would be expected by a combinations of 30 cm(between rows)${\times}$5cm(between hills) plot, while 40cm ${\times}$ 5cm planting method would be suggested for rainy season growing. Highest seed yield was obtained at closet spacing in both dry and rainy season, and these results led to drilling method in seeding where about 20 seeds per meter of row could be recommended. Besides the seed yield, the close planting may produce some advantages, such as increase plant height and decrease lodging, weeds and erosion of surface soil.

  • PDF

Predicting Harvest Date of 'Niitaka' Pear by Using Full Bloom Date and Growing Season Weather (배 '신고'의 만개일 및 생육기 기상을 이용한 수확일 예측)

  • Han, Jeom-Hwa;Son, In-Chang;Choi, In-Myeong;Kim, Seung-Heui;Cho, Jung-Gun;Yun, Seok-Kyu;Kim, Ho-Cheol;Kim, Tae-Choon
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.549-554
    • /
    • 2011
  • The effect of full bloom date and growing season weather on harvesting date of 'Niitaka' pear (Pyrus pyrifolia) in Naju province and the model of multiple linear regression for predicting the fruit growing days was studied. Earlier year in full bloom date, the harvesting date tended earlier but fruit growing days tended longer. Mean and coefficient of variation of fruit growing degree days (GDD) accumulated daily mean and maximum temperature at the base of $0^{\circ}C$ from full bloom date to harvesting date was 3,565, 2.9% and 4,463, 2.5%, respectively. Fruit growing days was not correlated with the fruit GDD accumulated daily mean and maximum temperature at the base of $0^{\circ}C$ in each month but highly correlated with GDD accumulated daily meteorological factors at days after full bloom date. Especially, it was highly negatively correlated with GDD accumulated daily mean and maximum temperature at the base of $0^{\circ}C$ from $1^{st}$ day after full bloom to $60^{th}$ day. The determination coefficient ($r^2$) of multiple linear regression model by full bloom date, GDD accumulated daily mean and maximum temperature from $1^{st}$ day after full bloom to $60^{th}$ day for predicting fruit growing days was 0.7212. As a result, the fruit growing days of 'Niitaka' pear in Naju province can predict with 72% accuracy by the model of multiple linear regression.

Symbiotic Nitrogen Fixation Activity and Environmental Factors of Robinia Pseudo-acacia L. (아까시나무 ( Robinia pseudo - acacia L. ) 의 공생적 질소고정 활성과 환경요인)

  • Hong, Sung-Jin;Song, Seung-Del
    • The Korean Journal of Ecology
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 1990
  • The activity of symbiotic -fixation and environmental factors of Robinia pseudo-acacia L., bearing root nodules, were quantitatively analyzed during the growing period. Among changes of total nitrogen and phosphorus contents of each organ, leaves showed prominent decreases from the highest quantity of the early growing period to the lowest of the late period. The rhizosphere showed acidic pH and low level of nitrogen, phosphorus and organic matter contents during the growing period. -fixation activity of nodules initiated from April and showed the maximum value of 190 $\mu$/g DW/hr in late June and than decreased to 50$\mu$M/g DW/hr during the rainy and dry season. Another peak of the activity attained 246$\mu$M/g DW/hr in the late growing stage of September. The maximum value of nitrogen fixation activity was observed at the conditions of pH7, $25\{\circ}C$ of temperature and 20 Kpa of oxygen partial pressure.

  • PDF

Studies on the Physicochemical Properties of Korean Ginseng (Panax ginseng, C.M. Meyer) Root Starch 1. Starch Cantent and General Feachures (고려인삼 ( Panax ginseng C.A.Meyer)전분의 이화학적 특성에 관한 연구 제1보. 전분의 함량과 일반성상)

  • 김해중;조재선
    • Journal of Ginseng Research
    • /
    • v.8 no.2
    • /
    • pp.114-123
    • /
    • 1984
  • This study was conducted to investigated the morphology and distribution of starch granule in ginseng root. The results obtained are as follows; The starch contents of main and lateral ginseng 1$.$cot were 23-32% and 14-16%, respectively, and it was varied significantly with growing season, namely 15-37% in Summer (May to August) and 3-6% in Winter (November to March). Thus the starch content of ginseng root was different depending on the portien of ginseng root and growing seasons, but a significant difference was not observed by a growing period of ginseng. The starch granules showed nearly round or oval shape having the diameter 2-8${\mu}$ and their size were increased with a growing period of ginseng. The crystalline structure of starch granules was found to be B-type by X-ray diffraction study.

  • PDF

New Fungal diseases of Economic Resource Plants in Korea (III) (유용 자원식물의 진균성 신병해(III))

  • 신현동
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.197-209
    • /
    • 1995
  • This paper is a third report about the new fungal diseases of economic resource plants in Korea. It contains short descriptions on symptoms, occurrence conditions, pathogen, and some phytopathological notes for each of 10 fungal plant diseases. They are angular leaf spot of Achyranthes japonica by Cercospora achyranthis causing leaf spot and defoliation in the shade of plants, leaf spot of Armoracia lapathifolia by Cercospora armoraciae causing leaf spot to blight from the rainy season to autumn, hypophyllous mold of Dioscorea tokoro by Distocercospora pachyderma causing leaf spot and yellowing, hypophyllous mold of Artemisia spp.by Mycovellosiella ferruginea causing leaf spot and yellowing, angular leaf spot of Aralia elata by Pseudocercospora araliae causing velvety leaf spot and defoliation, hypophyllous mold of Lycium chinense by Pseudocercospora chengtuensis causing velvety leaf spot and defoliation from the rainy season to autumn, angular leaf spot of Diospyros lotus by Pseudocercospora disospyri-morrisianae causing leaf spot and defoliation from summer to autumn, brown leaf spot of Impatiens textori by Pseudocercospora nojimae causing leaf spot to blight from the rainy season, leaf spot of Cephalonoplos segetum by Ramularia cirsii causing leaf spot to blight throughout the growing season, and white mold of Leonurus sibiricus by Ramularia leonuri causing leaf spot to blight mostly in autumn.

  • PDF

Evaluation of climate change on the rice productivity in South Korea using crop growth simulation model

  • Lee, Chung-Kuen;Kim, JunHwan;Shon, Jiyoung;Yang, Won-Ha
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.16-18
    • /
    • 2011
  • Evaluation of climate change on the rice productivity was conducted using crop growth simulation model, where Odae, Hwaseong, Ilpum were used as a representative cultivar of early, medium, and medium-late rice maturity type, respectively, and climate change scenario 'A1B' was applied to weather data for future climate change at 57sites. When cropping season was fixed, rice yield decreased by 4~35% as climate change which was caused by poor filled grain ratio with high temperature and low irradiation during grain-filling. When cropping season was changed, rice yield decreased by only 0~5% as climate change which was caused poor filled grain ratio with low irradiation during grain-filling period. However, this irradiation decline was less than when cropping season was fixed. Therefore, we need to develop rice cultivars resistant to low irradiation which can maintain high filled grain ratio under poor irradiation condition, and late maturity rice cultivars whose growing period is longer than the present medium-late maturity type.

  • PDF