• Title/Summary/Keyword: growing bed

Search Result 143, Processing Time 0.03 seconds

Nursery Growing Media Practice: Impact on Seed Germination and Initial Seedling Development of Hymenodictyon orixensis (Roxb.) Mabberley - A Vulnerable Native Tree Species

  • Islam, Azharul;Hao, Hong;Hossain, Mohammed Kamal;Rahman, Mahmudur
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.1
    • /
    • pp.38-47
    • /
    • 2022
  • Hymenodictyon orixensis (Roxb.) Mabberley (locally known as Bhutum in Bangladesh) is both an ecologically and economically valuable multipurpose tree species for afforestation and reforestation programs in Bangladesh. Seed germination and seedling development study of H. orixense were conducted to find out the response to different growing medium, e.g., polybag (15×10 cm (T0) and 20×15 cm (T1)), sand medium in propagator house (T2), conventional nursery bed (T3), and root trainer (T4) in the Nursery. Consequently, germination behavior and seedling morphological parameters of H. orixense were assessed. The results revealed that the sand medium of the propagator house (T2) provided the highest germination % (58.57±22.30) and the highest germination energy (11.43±2.43) followed by seedlings growing in 20×15 cm polybags (T1) containing forest topsoil and cow-dung at a ratio of 3:1. Except for germination energy, germination values, and germination capacity, other seed biology parameters, particularly imbibition, germination period, germination rate, and plant survival percent in T1, T2, T3, and T4 were significantly (p<0.05) different from T0. Each phenotypic parameter of seedlings and dry matter of shoot and root significantly differed from control except root length (p<0.992). Based on this study, Polybags of 20×15 cm size are regarded as the best medium for quality seedling development of H. orixense. The nursery bed (T3) had the lowest germination performance and developed more inferior quality seedlings. Thereby, 20×15 cm size of polybags with conventional soil and cow-dung media is recommended for maximum germination and to grow the quality seedlings of H. orixense in the Nursery.

Characterizing the Effects of Microclimate on the Growth of Ginseng Seedlings using Multi-layer Bed Production Facilities (다층베드시설을 이용한 묘삼 생산 시 미기상 환경과 생육특성)

  • Jang, Myeong Hwan;Kim, Seung Han;Choi, Yangae;Won, Do Yeon;Kim, Im Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.490-497
    • /
    • 2018
  • Background: The growth process of ginseng seedlings is very important in producing good quality ginseng. This study was carried out to investigate the effects of different microclimates on the growth characteristics of ginseng seedlings in a multi-layer bed facility. Methods and Results: Ginseng seedlings were cultivated in a three-layer bed facility. The air temperatures on the first and second floors were similar, while that on the third floor was about $1-4^{\circ}C$ higher than that on the other floors. The vapor pressure deficit (VPD) was higher inside than on the outside of the facility, and that on third floor was the highest in the multi-layer bed system. The photosynthetic rate, chlorophyll fluorescence, and growth characteristics of ginseng seedlings did not significantly differ among the three floors. The yield of ginseng seedlings was the highest at $721g/1.62m^2$ on the first floor. Conclusions: It was found that microclimate plays an important role in growing ginseng seedlings in multi-layer bed facilities, and therefore proper environmental control is important. In addition, producing ginseng seedlings using multi-layer bed facilities is a technology that is expected to provide a way to overcome climate change and stabilize ginseng production.

Evaluation of the Coal-Degrading Ability of Rhizobium and Chelatococcus Strains Isolated from the Formation Water of an Indian Coal Bed

  • Singh, Durgesh Narain;Tripathi, Anil Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1101-1108
    • /
    • 2011
  • The rise in global energy demand has prompted researches on developing strategies for transforming coal into a cleaner fuel. This requires isolation of microbes with the capability to degrade complex coal into simpler substrates to support methanogenesis in the coal beds. In this study, aerobic bacteria were isolated from an Indian coal bed that can solubilize and utilize coal as the sole source of carbon. The six bacterial isolates capable of growing on coal agar medium were identified on the basis of their 16S rRNA gene sequences, which clustered into two groups; Group I isolates belonged to the genus Rhizobium, whereas Group II isolates were identified as Chelatococcus species. Out of the 4 methods of whole genome fingerprinting (ERIC-PCR, REP-PCR, BOX-PCR, and RAPD), REP-PCR showed maximum differentiation among strains within each group. Only Chelatococcus strains showed the ability to solubilize and utilize coal as the sole source of carbon. On the basis of 16S rRNA gene sequence and the ability to utilize different carbon sources, the Chelatococcus strains showed maximum similarity to C. daeguensis. This is the first report showing occurrence of Rhizobium and Chelatococcus strains in an Indian coal bed, and the ability of Chelatococcus isolates to solubilize and utilize coal as a sole source of carbon for their growth.

A study of Analysis and Review of Cargo Urban Railway Stations of Korea for Underground Logistics Systems

  • Myung Sung Kim;Kyung Ho Jang;Young Min Kim;Joo Uk Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.208-219
    • /
    • 2023
  • Recently, as mega-urbanization progresses, urban logistics centered on large cities is growing rapidly, and logistics transportation is increasing due to the lack of logistics infrastructure and the operation of a delivery system using cargo trucks in the city center. being cited as a cause. In order to solve this problem, domestic researchers are conducting research on the development of " Urban Underground railway Logistics System" that minimizes the initial infrastructure construction cost by utilizing the existing urban railway facilities in the city. Therefore, this paper analyzed the usage environment of the actual urban railway station to which the system will be applied in order to derive candidates for the test bed selection of "Urban Underground railway Logistics System". The evaluation criteria for test bed candidate role selection were established, and the candidate group derived from the Brown & Gibson model was used to evaluate the candidate group and derive the candidate role. A review of the results was conducted to contribute to the establishment of a test bed for the " Urban Underground railway Logistics System" under development.

Vegetable Value and Productivity of Buckwheat Seedlings (메밀채소의 생산성 및 채소적 가치)

  • Choi, Byung-Han;Park, Keun-Yong;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.86-92
    • /
    • 1992
  • Green buckwheat seedlings have been used as a pollution free vegetable and medicinal crop for a long time. Some of the reasons are the rapid growth rate, the high protein and rutincontent, and a more favorable ratio of leaf to stem than mature plants. Off-crop season cultivation techniques were developed for growing the young and green buckwheat vegetable of higher quality and yield, and for its increased value-added income. The effects of planting season, seeding rate, seed bed soil fertility and type, and seedling growth period on yield and rutin content were determined for vegetable and medicinal use. The young vegetable yields. in the off season culture ranged from 2.62t/ha to 22.7t /ha. The highest vegetable yield was 22.7t /ha for 25 days old seedlings grown in the polyethylene film tunnel from March 30 to April 25, 1991 where seedling rate was 360kg /ha. Buckwheat vegetable quality and income were dependent upon planting season, seeding rate, growing duration and temperature, and facilities of raising seedlings. Protein content of buck-wheat seedlings was from 21.5% to 17.2%. Rutin content of the vegetable was 53.9~31.7mg /100g for the whole plant in average. The protein and rutin content was significantly varied due to the different environmental conditions including fertility and type of seed bed soil, growing duration, temperature of the green house, and polyethylene film house and tunnel.

  • PDF

Data Analysis for Structural Design of Pleurotus Eryngii Cultivation Facilities (큰느타리버섯 재배사의 구조설계용 자료 분석)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.29-37
    • /
    • 2005
  • This study was carried out to file up structural design data for optimizing Pleurotus eryngii growing houses. Design data are including current farm status of Pleurotus eryngii growing houses in the aspect of structural configuration as well as environmental conditions to be controlled and maintained inside. A structural analysis was performed for the on-farm structures as well as some structures modified and suggested through field survey and analysis. The results are summarized as follows. According to the results of status analysis, Pleurotus eryngii growing houses were categorized as arch-roofed simple type and sandwich panel type. Though the size of Pleurotus eryngii cultivation facilities were considerably diverse, the basic dimensions of Pleurotus eryngii cultivation facilities showed relatively similar pattern: more or less of 20m of length, $6.6\~7.0m$ of width, $4.6\~5.0m$ of peak height, $1.2\~1.6m$ of bed width, and 4 layers of bed. In the aspect of spatial use of cultivation facilities, suggested models were shown to be mostly reasonable in the aspect of heating and cooling, micro-meteorological stability, land use efficiency per unit floor area, etc.. Especially, the standard models suggested so far were thought to be not efficient in its surface area and spatial volume per unit floor area as well as its uneffective structural design in the area around ceiling. In the results of structural analysis for the models suggested through this study by using those section frames to be found on farms, the panel type structures of both single span and double span were estimated to be over designed, whereas arch-roofed pipe houses were mostly found to be under-designed.

Spot Cooling System Development for Ever-bearing Strawberry by Using Low Density Polyethylene Pipe (연질 PE관을 이용한 여름딸기 부분냉방기술 개발)

  • Moon, Jong Pil;Kang, Geum Choon;Kwon, Jin Kyung;Lee, Su Jang;Lee, Jong Nam
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.149-158
    • /
    • 2014
  • The effects of spot cooling on growing ever-bearing strawberry in hydroponic cultivation during summer by spot cooling system was estimated in plastic greenhouse located in Pyeongchang. The temperature of cooling water was controlled by heat pump and maintained at the range of $15{\sim}20^{\circ}C$. Cooling pipes were installed in root zone and very close to crown. Spot cooling effect was estimated by applying system in three cases which were cooling root zone, crown plus root zone, and crown only. White low density polyethylene pipe in nominal diameter of 16 mm was installed on crown spot, and Stainless steel flexible pipe in nominal diameter of 15A was installed in root zone. Crown and root zone cooling water circulation was continuously performed at flowrates of 300 ~ 600 L/hr all day long. Strawberry yields by test beds were surveyed from Aug. 1 to Sep. 30. The accumulated yield growth rate compared with a control bed of crown cooling bed was 25 % and that of crown plus root zone cooling bed was 25 % and that of root zone cooling bed was 20 %. The temperatures of root spot in root zone cooling was maintained at $18{\sim}23.0^{\circ}C$ and that of crown spot in crown cooling was maintained at $19{\sim}24^{\circ}C$. Also, the temperatures of root spot in crown plus root zone cooling bed was maintained at $17.0{\sim}22.0^{\circ}C$ and that of crown spot was maintained at $19{\sim}25^{\circ}C$.

Cooling and Deformation Analysis of a Layered Road in a FDM Type 3D Printing Through Thermal-structural Coupled Simulation

  • Kim, S.L.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.216-223
    • /
    • 2017
  • The additive manufacturing technology, also called 3D printing, is growing fast. There are several methods for 3D printing. Fused deposition modeling (FDM) type 3D printing is the most popular method because it is simple and inexpensive. Moreover, it can be used for printing various thermoplastic materials. However, it contains the cooling of layered road and causes thermal shrinkage. Thermal shrinkage should be controlled to obtain high-quality products. In this study, temperature distribution and cooling behavior of a layered road with cooling are studied through computer simulation. The thermal shrinkage of the layered road was simulated using the calculated temperature distribution with time. Shape variation of the layered road was predicted as cooling proceeded. Stress between the bed and the layered road was also predicted.This stress was considered as the detaching stress of the layered road from the bed. The simulations were performed for various thermal conductivities and temperatures of the layered road, bed temperature, and chamber temperature of a 3D printer. The simulation results provide detailed information about the layered road for FDM type 3D printing under operational conditions.

Stable isotope and water quality analysis of coal bed methane produced water in the southern Qinshui Basin, China

  • Pan, Jienan;Zhang, Xiaomin;Ju, Yiwen;Zhao, Yanqing;Bai, Heling
    • Membrane and Water Treatment
    • /
    • v.4 no.4
    • /
    • pp.265-275
    • /
    • 2013
  • China is one of the countries with the highest reserves of coal bed methane (CBM) in the world. Likewise, the CBM industry is significantly growing in China. However, activities related to CBM development have led to more environmental problems, which include serious environmental damage and pollution caused by CBM-produced water. In this paper, the detailed characteristics of CBM-produced water in the southern Qinshui Basin were investigated and analyzed and compared with local surface water and coal mine drainage. Most of CBM-produced water samples are contaminated by higher concentration of total dissolved solids (TDS), K (Potassium), Na (Sodium) and $NH_4$. The alkalinity of the water from coalmines and CBM production was higher than that of the local surface water. The concentrations of some trace elements such as P (Phosphorus), Ti (Titanium), V (Vanadium), Cr (Chromium), Ni (Nickel), Zn (Zinc), Ge (Germanium), As (Arsenic), Rb (Rubidium), and Pd (Palladium) in water from the coalmines and CBM production are higher than the acceptable standard limits. The ${\delta}D$ and ${\delta}^{18}O$ values of the CBM-produced water are lower than those of the surface water. Similarly, the ${\delta}D$ values of the CBM-produced water decreased with increasing drainage time.

Germination and Early Growth Characteristics of Pennisetum alopecuroides, Phragmites communis, and Miscanthus sinensis According to the Seeding Methods (파종방법에 따른 수크령, 갈대, 억새의 발아 및 초기생장 특성)

  • Cho, Yong-Hyeon;Lee, Ka-Hyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.163-172
    • /
    • 2014
  • To investigate the possibility of developing the seeding measure for river bank slope revegetation, germination experiment and early growth observation were conducted using 3 native species growing naturally around river banks such as Pennisetum alopecuroides, Phragmites communis, and Miscanthus sinensis. The applied seeding methods were 3 such as scattering seeds, tillage after scattering seeds, and covering up seed with soil after scattering seeds. According to seeding methods, germination experiment and early growth observation were carried out on nursery bed soil in greenhouse. As results of this study, all the 3 native plant species' germination ratio and growth in length on nursery bed soil were highest on the seeding method of covering up seed with soil. Also it was verified by Duncan's multiple range test that the germination ratio and growth in length on the seeding method of covering up seed with soil is distinguished from those on other two seeding methods. According to this results, the best possible seeding measure to be developed should be mechanical seed spraying with soil.