• Title/Summary/Keyword: grouting materials

Search Result 158, Processing Time 0.028 seconds

Evaluation on the Physical properties of Ultra Fine Cement for Grouting Materials (초미립자 시멘트의 지반 주입재로서의 특성 평가)

  • Park Won-Chun;Mun Kyoung-Ju;Jung Jong-Ju;Soh Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.301-304
    • /
    • 2004
  • The objective of this study is to evaluate the physical properties of ultra fine-ground cement for grouting materials. This study investigates the compressive strength of cement paste, homogenized gel and solidified soil matrix with ultra fine-ground cement. Also It is estimated the injection properties of ultra fine-ground cement. From the test results, the compressive strength of ultra fine-ground cement is higher than that of portland cement. The injection properties are sufficient to apply silt-sand soil and minute-cracked rock bed. Also the properties of soil stability like water permeability coefficient are enough to be adapted various grouting specification.

  • PDF

Evaluation of Injection capabilities of a biopolymer-based grout material

  • Lee, Minhyeong;Im, Jooyoung;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • Injection grouting is one of the most common ground improvement practice to increase the strength and reduce the hydraulic conductivity of soils. Owing to the environmental concerns of conventional grout materials, such as cement-based or silicate-based materials, bio-inspired biogeotechnical approaches are considered to be new sustainable and environmentally friendly ground improvement methods. Biopolymers, which are excretory products from living organisms, have been shown to significantly reduce the hydraulic conductivity via pore-clogging and increase the strength of soils. To study the practical application of biopolymers for seepage and ground water control, in this study, we explored the injection capabilities of biopolymer-based grout materials in both linear aperture and particulate media (i.e., sand and glassbeads) considering different injection pressures, biopolymer concentrations, and flow channel geometries. The hydraulic conductivity control of a biopolymer-based grout material was evaluated after injection into sandy soil under confined boundary conditions. The results showed that the performance of xanthan gum injection was mainly affected by the injection pressure and pore geometry (e.g., porosity) inside the soil. Additionally, with an increase in the xanthan gum concentration, the injection efficiency diminished while the hydraulic conductivity reduction efficiency enhanced significantly. The results of this study provide the potential capabilities of injection grouting to be performed with biopolymer-based materials for field application.

Verification of Reinforcement with Grouting Materials in a Small Scale Reservoir Dike using Surface and Borehole Electrical Resistivity survey (지표 및 시추공 전기비저항 탐사를 중심으로)

  • Song, Sung-Ho;Yong, Hwan-Ho;Kim, Yang-Bin
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.239-245
    • /
    • 2009
  • To verify the reinforcing effect of grouting materials composed of colloid cement and ordinary portland cement on the water leakage region in a small scale dike, we performed a tubecasing method and applied surface electrical resistivity survey including electrical resistivity tomography (ERT) to find resistivity variation before and after grouting. Hydraulic conductivities after grouting show 10 times lower than those of before grouting. These variation indicates that the cement grout blocks the leakage pathway effectively. As the results of dipole-dipole resistivity survey along the dike, resistivity distribution after grouting did not represent noticeable spatial variation in time. Resistivity monitoring results at the dike with vertical electrical sounding (VES) showed that the region of decreasing apparent resistivity was occupied by the grout after grouting. Predicted resistivities from the inversion of ERT data well matched with results of VES at the same regions. From the ERT using check holes to inspect the effect of grouting, we could find that the ERT is quite effective to identify spatially the grout region in a dike.

Experimental Study on Application of Paste-like Grouting Material to Void (공동부 충전재로써 페이스트형 유동화토의 환경 안정성 평가에 관한 실험적 연구)

  • Kim, Jin-Chun;Kang, Hee-Jin;Lim, Yu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1063-1068
    • /
    • 2008
  • When construction of high pressure jet-grouting is to be performed, it has been reported that applied cement slurry which hasn't got dried out can cause severe environmental pollution, and can flow into near streams and fish farms. Several laboratory tests were performed in this study in order to verify safety of paste-like grouting material that was developed newly to be applied to void in the ground. According to experimental test results, it is proved to be so safe that application of the newly developed flowable grouting material can prevent the materials from spilling into surrounding areas and is not harmful to fishes.

  • PDF

Deformation Characteristics of the Pressurized Grouting Soil Nailing Systems from the Field Pull-out Tests (현장인발시험을 통한 가압 그라우팅 쏘일네일의 변형특성)

  • Chun, Byungsik;Park, Joosuck;Park, Sisam;Jung, Jongju;Kong, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2008
  • In this study, a newly modified soil nailing technology named as the PGSN (Pressurized Grouting Soil Nailing) system is proposed. Effects of various factors related to the design of the pressurized grouting soil nailing system, such as the length of re-bars and type of reinforcement materials, were examined throughout a series of the displacement-controlled field pull-out tests. 9 displacement-controlled field pull-out tests were performed and the ratio of injected grout volume to grout hole volume were also evaluated based on the measurements. In addition, short-term characteristics of pull-out deformations of the newly proposed PGSN system were analyzed and compared with those of the ordinary soil nailing system by carrying out field pull-out tests. The test results were shown that the displacements of pressurized grouting soil nailing system were decreased 30~36% in comparison with using gravity grouting soil nailing system by the pressurized effect. The displacements of steel tube were diminished 31~32% comparison with using deformed bar by the reinforcement type change from the field pull-out tests.

  • PDF

A Study about The Global Trend of Neo-Grouting Technology (최신 그라우팅 기술의 세계적인 동향에 관한 연구)

  • Kim, Jin-Chun;Kim, Sang-Gyun;Yoo, Byung-Sun;Kang, Hee-Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.2
    • /
    • pp.25-34
    • /
    • 2014
  • This study researches on global technology trend in each of composing technology, such as grouting material, grouting equipment, and construction management technology, which grouting technology has been founded upon to improve relatively inadequate domestic grouting technology and to establish the global standard for overseas expansion in the future. As far as grouting material is concerned, while High-Penetration and High-Strength micro cement ($1.5{\mu}m$) has been developed in 2000's in Japan, JinChun Kim et al. (2014) has been developing hybrid type micro cement grouting material and examining specifications of different kinds of projects and countries to analyze the trend of grouting equipment development. The specification contains detailed requisite specification for materials, mixers, pumps, agitators, and packers and it has to satisfy the standard of different countries to win global contracts. Grouting management technology can be divided into four different generations and Scandinavian countries, such as Sweden, Norway, and Finland, Japan, and South Korea are recently doing vigorous researches on the Fourth generation which merges grouting technology with ICT.

Development and Assessment of Laboratory Testing Apparatus on Grouting Injection Performance (그라우팅 주입성능 실내실험 장비 개발 및 신뢰도 평가)

  • Jin, Hyunwoo;Ryu, Byunghyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.23-31
    • /
    • 2016
  • Grout is generally operated with low viscous material similar to water, but grout for micro crack with high viscous materials and high injection pressure is gradually increased under the development of underground and subsea space. In order to estimate grouting injection performance considering crack width, viscosity of grouting materials, and injection pressure, there should be a reliable standard laboratory testing method. In this paper, theoretical injection mechanisms of grouting materials are presented as radial and linear flows, and laboratory testing apparatus are introduced to simulate each flow case. Radial flow is simulated by using acrylic disk plates which are able to spread grouting material radially from the center of the disk plates, and linear flow is simulated by using stainless parallel plane plates which are able to spread grouting material linearly. Apparatus are consist of upper and lower plates and industrial films with different thickness are placed between plates in order to simulate various crack widths. Laboratory verification tests with these apparatus were conducted with tap water (1cP at $20^{\circ}C$) as an injection material. Through the laboratory testing results, the best laboratory testing method is recommended in order to estimate grouting injection performance.

A Study on the Utilization of Coal Fired Fly-ash as Microfine Grouting Materials (초미립자 지반주입재로서 플라이애쉬의 적용성에 관한 연구)

  • 천병식;김진춘
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.113-125
    • /
    • 1998
  • At the end of 1997 about 3 million tons of coal ash was produced as byproducts from the coal fired electrical power plants in Korea. Only about 27% of that byproducts was utilized as the admixtures of cement and concrete industry. But the large quantity of coal fired fly-ash has been used as the soil improvement materials in other countries. So the aim of this study is the estimation of the applicability of the coal fired fly-ash as microfine grouting materials by admixing the superfine particles which were separated from the coal fired fly-ash for the higher values. The 6 types of specimens were manufactured in the laboratory for the purpose of estimating the chemical and physical properties of cement and grouts. These specimens consisted of 2 specific surfaces of 6, 000 and 8, 000$cm^2$/g in Elaine method. And these specimens are devide into 3 ratios (30%, 50%, 70%) of fly-ash by weight. From the estimated properties of the coal fired fly-ash microflne cements and grouts, 50% fly-ash is the most suitable ratio for grouting materials. However, further study of durability is necessary for using fly-ash grouts practically at the field projects. The higher content of the unburned carbon of fly-ash increases the thinner layer of carbon on the surface of solution of grouts, and requires more quantity of surface active agent. As a results of this study, it is found that the microfine fly-ash is very useful as a good grouting material if 50% of fly-ash is added with the microfine portland cement. So, in the near future, if the coal fired fly-ash is able to be used as grouting material in Korea, the demand of fly-ash will increase rapidly.

  • PDF

A Study on Application of Improved Tunnel Water-Sealing Grouting Construction Process and the Inverse Analysis Material Selection Method Using the Injection Processing Results (개선된 터널 차수그라우팅 시공 프로세스 적용 및 그 주입시공결과를 이용한 역해석 재료선정방법 연구)

  • Kim, Jin Chun;Yoo, Byung Sun;Kang, Hee Jin;Choi, Gi Sung;Kim, Seok Hyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.101-113
    • /
    • 2022
  • This study is planned with the aim of developing a systematic construction process based on the scientific and engineering theory of the water-sealing grouting construction applied to the tunnel excavation process during the construction of the downtown underground traffic network, so that the construction quality of the relatively backward domestic tunnel water-sealing grouting construction is improved and continuously maintained no matter who constructs it. The main contents of the improved tunnel water-sealing grouting can be largely examined in the classification of tunnel water-sealing grouting application and the definition of grouting materials, the correlation analysis of groundwater pressure conditions with groundwater inflow, the study of the characteristic factors of bedrock, and the element technologies and injection management techniques required for grouting construction. Looking at the trends in global research, research in the field of theoretical-based science and engineering grouting is actively progressing in Nordic countries (Sweden, Finland, Norway, etc.), Japan, Germany, and the United States. Therefore, in this study, the algorithm is established through theoretical analysis of the elements of tunnel water-sealing grouting construction techniques to provide an integrated solution including a construction process that can effectively construct tunnel water-sealing grouting construction.

Evaluation of Ground Effective Thermal Conductivity and Borehole Effective Thermal Resistance from Simple Line-Source Model (단순 선형열원 모델을 이용한 지중 유효 열전도도와 보어홀 유효 열저항 산정)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.512-520
    • /
    • 2007
  • The design of a ground-source heat pump system includes specifications for a ground loop heat exchanger where the heat transfer rate depends on the effective thermal conductivity of the ground and the effective thermal resistance of the borehole. To evaluate these heat transfer properties, in-situ thermal response tests on four vertical test boreholes with different grouting materials were conducted by adding a monitored amount of heat to circulating water. The line-source method is applied to the temperature rise in an in-situ test and extended to also give an estimate of borehole effective thermal resistance. The effect of increasing thermal conductivity of the grouting materials from 0.818 to $1.104W/m^{\circ}C$ resulted in overall increases in effective thermal conductivity by 15.8 to 56.3% and reductions in effective thermal resistance by 13.0 to 31.1%.