• Title/Summary/Keyword: grouting materials

Search Result 158, Processing Time 0.025 seconds

Applicability of CGS for Remediation and Reinforcement of Damaged Earth Dam Core (손상된 흙댐 코어의 보수.보강을 위한 CGS 공법의 적용성)

  • 천병식;최중근
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.325-334
    • /
    • 2003
  • It is very difficult to rehabilitate the damaged earth dam core to manage it stably against development of flow path and increase of leakage by hydraulic fracture. In this study, application of CGS (Compaction Grouting System) to damaged earth dam core was noticed by analyzing and comparing the results of the in-situ data and FEM. Results of in-situ data showed that according as progress of rehabilitation works tip pressures increased and volume of injection decreased, voids of damaged dam core were filled with materials similar to origin dam core. Rehabilitations caused turbidity and volume of leakage to decrease at the same water level. Also, results of FEM analysis indicated that permeability decreased by rehabilitation. Through this study, it is proved that CGS is able to decrease permeability coefficient, volume of leakage and turbidity on damaged earth dam core.

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.414-423
    • /
    • 2006
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925, Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower and the motion of grout is also a function of formation permeability. Viscosity of grout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this thesis, characteristics of new cement grout material that is developed recently is studied: injectable volume of new grout material is tested in two different sizes of sands, and the method to calculate injectable volume of grout is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to be an exponential function of time. And lumped parameter $\theta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressure.

  • PDF

Fundamental study on the development of Filling materials for Trenchless Emergency Restoration of Ground cavity (비개착식 지반공동 긴급복구를 위한 충전재료 개발에 관한 기초 연구)

  • YU, Nam-Jae;Choi, Ju-Hyun;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • Recently, there have been a lot of incidents related to ground sinks in urban areas, but restoration work is complicated and inconvenience due to on-site control, and particularly, grouting and soil filling are generally applied as recovery measures, but when the grouting or the soil filling is carried out, material segregation phenomenon occurs in the ground or a lot of restoration amount is often required, depending on the state of sinks and the existence of groundwater under the ground and the soil can be lost due to the flow of the ground water, and thus the purpose of this study is to develop a pouch-type filler applied to a trenchless method for emergency reinforcement of the ground sinks with the aim of quick recovery of the ground sink in urban areas, and as a result, it was confirmed that compression strength and the expansion ratio were different according to the temperature of ground water and the compression strength and the expansion ratio could be controlled by mixing alumina powder.

Evaluation of Engineering Properties in Synthetic Polymer-Silica Sol Grout (합성폴리머 실라카졸 그라우트의 공학적 특성 평가)

  • Jang, Seong-Min;Jung, Hyuk-Sang;Kim, Jeong-Han;Min, Byung-Chan;Lee, Byeong-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.29-39
    • /
    • 2022
  • The engineering characteristics of synthetic polymer-silica sol, which has the effect of reducing leakage, was evaluate and compared with typical grouting material, the water glass-based SGR injection material in this study. The result of the laboratory tests on strength and durability about the synthetic polymer-silica sol showed more than twice as high as LW-based injection materials in uniaxial compressive strength, significantly lower values in shrinkage rate and permeability. The result of pH was less than 8.5 (the drinking water quality standard). As a result of the leaching test, the Na2O elution amount of the synthetic polymer-silica sol was measured to be 3 to 4 times smaller than that of the water glass grout. These results be assumed that the synthetic polymer-silica sol has better durability and permeability than those of the typical water glass-based grout.

Grouting Properties using Thixotropic Material and Vibration Impact Method (가소성 그라우트 재료와 진동 및 충격을 부여하는 공법에 의한 지반개량 특성)

  • Keeseok Kim;Haseog Kim;Bong-hyun Baek;Simhun Yuk
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • In grouting, the LW method is commonly employed to induce the gelation of cementitious material using water glass, thereby restricting the extent of material injection. Nevertheless, challenges manifest when materials are lost before gelation, particularly in regions with high groundwater flow rates or significant subsurface voids. This study developed a thixotropic grout material using LFS and GGBFS to mitigate material loss during injection, with an assessment of its flow characteristics, durability in marine exposure, strength, and injection properties. The outcomes revealed that the thixotropic grout material exhibited flow ranging from 105 to 143 mm and enhanced strength and durability compared to the LW method. Furthermore, field tests substantiated that applying vibration and impact improved impermeability.

A Study on the Application Review of Hwang-toh for Ground Grouting Based on Smart Construction (스마트건설기반에서의 지반그라우팅을 위한 황토의 적용성 검토)

  • Taese Lee;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.21-27
    • /
    • 2024
  • Limestone-based cement has been well utilized as a construction material throughout the world, but as civil and architectural development accelerates, limestone will gradually be depleted. The use of cement, the main material for civil engineering and construction, is rapidly increasing in modern times, and the depletion of high-quality limestone resources will be greater than expected in the future. Therefore, if existing resources can be used as construction materials to replace cement based on accumulated technology, the depleting limestone resources can be utilized for a longer period of time. In order to determine whether Hwang-toh, which forms about 10% of the surface layer of Korea's terrain, can be partially utilized as a construction material, this study aims to develop a Hwang-toh accelerator agent and prove whether it can be applied to the field through indoor tests.

A Study on the Reinforcement Effect Analysis of Aging Agricultural Reservoir using Surface Stabilizer (표층안정재를 사용한 노후 농업용 저수지의 보강효과 분석에 관한 연구)

  • Kim, Jae-Hong;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.13-21
    • /
    • 2020
  • In Korea, small reservoirs have been constructed for the supply of agricultural water, but most of them have been over 50 years from the year of construction. Aging agricultural reservoirs are being investigated for serious defects such as leaks and movements in slope, which are very vulnerable to safety. Accordingly, grouting methods are used to reinforce aging agricultural reservoirs in Korea. However, cement used as a grouting injection material consumes natural resources and generates a large amount of greenhouse gases during production. In addition, there is a problem that sufficient reinforcement is not made due to various factors such as the injection amount, the compounding ratio, the injection pressure, and etc. Therefore, due to these problems, the development of new materials and methods that can replace the grouting method and cement is required. In order to solve these problems, this study conducted an laboratory test on the surface stabilizer used to secure the stability of road and rail slopes. In addition, the program was analyzed and the reinforcing effect was examined when the surface stabilizer was used as reinforcement material for aging agricultural reservoir. As a result of the laboratory test, when the surface stabilizer is mixed, the increase of cohesion is possible up to 9% and there is no change in the friction angle. The results of the program analysis showed that the 1.0m reinforcement of slopes increased the factor of safety by 1.4 times, making it possible to reinforce the aging agricultural reservoir using surface stabilizers. And as a reinforcement method, it was analyzed that it is most appropriate to reinforce the slope and the bottom of slope simultaneously.

The Durability of Environmentally Friendly Inorganic Grouting Material(NDS) (친환경적인 무기질계 주입재(NDS)의 내구성에 관한 연구)

  • Lee, Hyejin;Lee, Jonghwi;Jung, kyoungsik;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.49-56
    • /
    • 2011
  • Recently, the ground injection method using water glass as one of the components of the main resources and the products of the construction has some basic problems for permanent reinforcement of foundation and stopping leakage of water because it has some serious problems such as durability reduction, compression strength reduction and eluviation. This study was to evaluate the environmental impact and durability of the developed friendliness of Natural and Durable Stabilizer(NDS) of inorganic injection and Space Grouting Roket(SGR) with typical water glass type material. Two materials, NDS and SGR, were compared with each other by unconfined compressive strength test, fish poison test, durability test and triaxial permeability test. The results of the durability test indicated that the 28-day strength of the NDS was 1.5 times higher than that of the SGR. The fish poison test proved that the survival rate in the SGR and NDS is 50~70%, and 100%, respectively. Therefore, the NDS has higher survival rate than that of the existing SGR. The NDS will be considered by an environmentally friendly product and moreover it has a few problems for soil and groundwater pollution.

Development of Alkali Stimulant-Based Reinforced Grouting Material from Blast Furnace Slag Powder (고로슬래그 미분말을 이용한 알칼리자극제 기반의 보강그라우트재 개발)

  • Seo, Hyeok;Jeong, Sugeun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.67-81
    • /
    • 2021
  • Grouting is used for reinforcement and waterproofing of soft ground to increase its bearing capacity, reduce the impacts of rising or lowering groundwater levels, and reduce subsidence due to vibration and general causes. This study investigated the enhancement of grout strength and hardening time by the addition of reinforcing fibers, and the development of non-cement grouting materials from blast furnace slag. An experiment was performed to measure the increase in grout strength resulting from the addition of 0.5% increments of aramid and carbon reinforcing fibers. The results show that the uniaxial compressive strength of grout increases with increasing content of reinforcing fiber. Comparison of three admixtures of finely powdered blast furnace slag and 10%, 20%, and 30% calcium hydroxide stimulating agent showed that the uniaxial compressive strength of the mixture increases with increasing content of alkaline stimulant; however, the strength was lower than for 100% pure cement. The reaction of calcium hydroxide with blast furnace slag powder, which increases the strength of the grout, is more effective if injected as a solution rather than a powder.

Injection Characteristics Evaluation of Conductive Grout Material According to Carbon Fiber Mixing Ratio (탄소섬유 배합비에 따른 전도성 그라우트 재료의 주입특성평가)

  • Hyojun Choi;Wanjei Cho;Hyungseok Heo;Teawan Bang;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The grouting method is a method of construction for the purpose of waterproofing and reinforcing soft ground. When grout is injected into the ground, there are various types of penetration and diffusion of grout depending on the shape of the ground, the size of soil, the porosity, and the presence or absence of groundwater. the current situation. Therefore, in this study, to investigate the penetration performance of the grouting to conductive material, laboratory tests were performed on the addition of the conductive material. In the injection test, 0%, 3%, and 5% of the mixed water were added as conductive materials to the grout, and the original ground condition was composed of various types of ground composed of gravel and silica sand. Conductive grout is injected by pressure into the model ground using a dedicated injection device, and the injection time (t), pressure (p), flow rate (v) and injection amount (q) are measured, and the hardened body injected in the model ground is collected. Penetration performance was evaluated. In the results of the grout injection experiment, the amount of conductive material used and the grout injection rate showed an inverse relationship, and it was confirmed that the penetration pattern was changed according to the size of the soil particles in the model ground. The grout containing the conductive material has relatively good penetration into the ground and excellent strength and durability of the hardened body, so it was judged that it could be used as an additive for measuring the penetration range of the grout.