• Title/Summary/Keyword: grout penetration

Search Result 32, Processing Time 0.025 seconds

Evaluation of grout penetration in single rock fracture using electrical resistivity

  • Lee, Hangbok;Oh, Tae-Min;Lee, Jong-Won
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • In this study, a new approach using electrical resistivity measurement was proposed to detect grout penetration and to evaluate the grouting performance for such as waterproof efficiency in single rock fracture. For this purpose, an electrical resistivity monitoring system was designed to collect multi-channel data in real time. This was applied to a system for grout injection/penetration using a transparent fracture replica with various aperture sizes and water-cement mix ratio. The electrical resistivity was measured under various grout penetration conditions in real time, which results were directly compared to the visual observation images of grout penetration/distribution. Moreover, the grouting success status after the curing process was evaluated by measuring the electrical resistivity in relation to changes in frequency in fracture cells where grout injection and penetration were completed. Consequently, it was determined that the electrical resistivity monitoring system could be applied effectively to the detection of successful penetration of grouting into a target area and to actual field evaluation of the grouting performance and long-term stability of underground rock structures.

Experimental observation and numerical simulation of cement grout penetration in discrete joints

  • Lee, Jong-Won;Kim, Hyung-Mok;Yazdani, Mahmoud;Lee, Hangbok;Oh, Tae-Min;Park, Eui-Seob
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.259-266
    • /
    • 2019
  • This paper presents a comparison between experimental measurements and numerical estimations of penetration length of a cement grout injected in discrete joints. In the experiment, a joint was generated by planar acryl plates with a certain separation distance (; aperture) and was designed in such a way to vary the separation distances. Since a cement grout was used, the grout viscosity can be varied by controlling water-cement (W/C) ratios. Throughout these experiments, the influence of joint aperture, cement grout viscosity, and injection rate on a penetration length in a discrete joint was investigated. During the experiments, we also measured the time-dependent variation of grout viscosity due to a hardening process. The time-dependent viscosity was included in our numerical simulations as a function of elapsed time to demonstrate its impact on the estimation of penetration length. In the numerical simulations, Bingham fluid model that has been known to be applicable to a viscous cement material, was employed. We showed that the estimations by the current numerical approach were well comparable to the experimental measurements only in limited conditions of lower injection rates and smaller joint apertures. The difference between two approaches resulted from the facts that material separation (; bleeding) of cement grout, which was noticeable in higher injection rate and there could be a significant surface friction between the grout and joint planes, which are not included in the numerical simulations. Our numerical simulation, meanwhile, could well demonstrate that penetration length can be significantly over-estimated without considering a time-dependency of viscosity in a cement grout.

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.414-423
    • /
    • 2006
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925, Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower and the motion of grout is also a function of formation permeability. Viscosity of grout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this thesis, characteristics of new cement grout material that is developed recently is studied: injectable volume of new grout material is tested in two different sizes of sands, and the method to calculate injectable volume of grout is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to be an exponential function of time. And lumped parameter $\theta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressure.

  • PDF

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.5-13
    • /
    • 2007
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925. Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower one and the motion of grout is also a function of formation permeability. Viscosity of pout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this paper, characteristics of new cement grout material that has been developed recently are studied: injectable volume of new grout material is tested in two different grain sizes of sands; and the method to calculate injectable volume of grout Is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to increase as an exponential function of time. And lumped parameter $\delta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressures. Injection test results show that grout penetration rate is decreased by the increase of grout viscosity and clogging phenomena.

Groutability enhancement by oscillatory grout injection: Verification by field tests

  • Kim, Byung-Kyu;Lee, In-Mo;Kim, Tae-Hwan;Jung, Jee-Hee
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2019
  • Grout injection is mainly used for permeability reduction and/or improvement of the ground by injecting grout material into pores, cracks, and joints in the ground. The oscillatory grout injection method was developed to enhance the grout penetration. In order to verify the level of enhancement of the grout, field grout injection tests, both static and oscillatory tests, were performed at three job sites. The enhancement in the permeability reduction and ground improvement effect was verified by performing a core boring, borehole image processing analysis, phenolphthalein test, scanning electron microscopy analysis, variable heat test, Lugeon test, standard penetration test, and an elastic wave test. The oscillatory grout injection increased the joint filling rate by 80% more and decreased the permeability coefficient by 33-68%, more compared to the static grout injection method. The constrained modulus of the jointed rock mass was increased by 50% more with oscillatory grout injection compared to the static grout injection, indicating that the oscillatory injection was more effective in enhancing the stiffness of the rock mass.

Factors affecting waterproof efficiency of grouting in single rock fracture

  • Lee, Hang Bok;Oh, Tae-Min;Park, Eui-Seob;Lee, Jong-Won;Kim, Hyung-Mok
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.771-783
    • /
    • 2017
  • Using a transparent fracture replica with aperture size and water-cement ratio (w/c), the factors affecting the penetration behavior of rock grouting were investigated through laboratory experiments. In addition, the waterproof efficiency was estimated by the reduction of water outflow through the fractures after the grout curing process. Penetration behavior shows that grout penetration patterns present similarly radial forms in all experimental cases; however, velocity of grout penetration showed clear differences according to the aperture sizes and water-cement ratio. It can be seen that the waterproof efficiency increased as the aperture size and w/c decreased. During grout injection or curing processes, air bubbles formed and bleeding occurred, both of which affected the waterproof ability of the grouting. These two phenomena can significantly prevent the successful performance of rock grouting in field-scale underground spaces, especially at deep depth conditions. Our research can provide a foundation for improving and optimizing the innovative techniques of rock grouting.

Injection Characteristics Evaluation of Conductive Grout Material According to Carbon Fiber Mixing Ratio (탄소섬유 배합비에 따른 전도성 그라우트 재료의 주입특성평가)

  • Hyojun Choi;Wanjei Cho;Hyungseok Heo;Teawan Bang;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The grouting method is a method of construction for the purpose of waterproofing and reinforcing soft ground. When grout is injected into the ground, there are various types of penetration and diffusion of grout depending on the shape of the ground, the size of soil, the porosity, and the presence or absence of groundwater. the current situation. Therefore, in this study, to investigate the penetration performance of the grouting to conductive material, laboratory tests were performed on the addition of the conductive material. In the injection test, 0%, 3%, and 5% of the mixed water were added as conductive materials to the grout, and the original ground condition was composed of various types of ground composed of gravel and silica sand. Conductive grout is injected by pressure into the model ground using a dedicated injection device, and the injection time (t), pressure (p), flow rate (v) and injection amount (q) are measured, and the hardened body injected in the model ground is collected. Penetration performance was evaluated. In the results of the grout injection experiment, the amount of conductive material used and the grout injection rate showed an inverse relationship, and it was confirmed that the penetration pattern was changed according to the size of the soil particles in the model ground. The grout containing the conductive material has relatively good penetration into the ground and excellent strength and durability of the hardened body, so it was judged that it could be used as an additive for measuring the penetration range of the grout.

Effect of Vibration on Grout Permeation Characteristics (진동주입이 그라우트재의 침투 특성에 미치는 영향 연구)

  • Lee, Mun-Seon;Kim, Jong-Sun;Lee, Sung-Dong;Choi, Young-Joon;Yang, Jae-Man;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.267-278
    • /
    • 2010
  • To improve the grout penetration characteristics, vibration method was adopted in this study. The grout material perturbed by cyclic vibration is injected into the ground. By applying the vibrating flow system, cement particles will become less adhesive and the clogging tendency will be decreased. A series of pilot-scale chamber tests were performed to verify the enhancement of the groutability by applying the vibratory grout injection; assessment on change of the lumped parameter $\theta$ which represents a barometer of clogging phenomenon was made. Moreover, the effect of vibratory grout injection through the joint was also investigated using artificially made rock joints. Experimental results as well as analytical results show that the grout penetration depth can be substantially improved by vibration grouting. Moreover, it was found that enhancement of the permeation grouting due to vibratory injection is more dominant at low grouting pressure of less than 400kPa.

  • PDF

Analysis of ground reinforcement effect using fracturing grouting (침투 및 할렬주입에 의한 지반보강 효과에 관한 연구)

  • Lee, J.S.;Lee, I.M.;Chung, H.S.;Lee, D.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.349-360
    • /
    • 2003
  • A practical modeling approach has been proposed in this study to better understand the behavior of penetration grouting which is normally applied to the jointed rock masses to increase the bearing capacity and to reduce the ground water flow into the tunnel. Based on Bingham model together with a steady-state flow of the grout, penetration model is simulated in the commercial package called UDEC and, injection pressure as well as joint thickness are found to be the main parameters to determine the range of grout spread. Another numerical model on fracturing grouting is also suggested and, in this case, the tensile strength as well as cohesion of the rock masses are proven to be the major factors to decide the fracturing mechanism of the rock masses. The reinforcement effect of the grout-reinforced rock masses is calculated from the suggested algorithm on orthotropic material model and it is found that the directional stiffness of reinforced rock masses is increased up to 3 to 4 times compared with original jointed rock masses. Future work will be concentrated on the water control around the tunnel by the grout injection and a model test will also be performed to verify the suggested methods developed in this study.

  • PDF

Effect of Vibratory Injection on Grout Permeation Characteristics (진동주입이 그라우트재의 침투 특성에 미치는 영향 연구)

  • Lee, Mun-Seon;Kim, Jong-Sun;Lee, Sung-Dong;Choi, Young-Joon;Yang, Jae-Man;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.37-47
    • /
    • 2010
  • To improve the grout penetration characteristics, a vibratory grout injection technique was adopted in this study. It is a technique of grout injection in which an oscillating pressure is added to the steady-state pressure as an injection pressure. By applying the vibration during grout injection, cement particles will become less adhesive and the clogging tendency will be decreased. A series of pilot-scale chamber tests were performed to verify the enhancement of the groutability by applying the vibratory grout injection; assessment on the change of the lumped parameter $\theta$ which represents a barometer of clogging phenomenon was made. Moreover, the effect of vibratory grout injection through the joint was also investigated using artificially made rock joints. Experimental results as well as analytical results show that the grout penetration depth can be substantially improved by vibratory grouting. Moreover, it was found that enhancement of the permeation grouting due to vibratory injection is more dominant at grouting pressure less than 400 kPa.