• Title/Summary/Keyword: group partial charges

Search Result 7, Processing Time 0.017 seconds

Hydrophilic and Hydrophobic Group Characteristics for Nonionic Surfactants (비이온 계면활성제에 대한 친수성기와 소수성기의 그룹 특성)

  • Ha, Youn-Shick;Son, Man-Shick;Paek, U-Hyon
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.57-64
    • /
    • 1994
  • On the basis of the principle of Bratch's electronegativity equalization, we calculated group partial charges and group electronegativities for nonionic surfactants with Pauling's elecoonegativity parameters by using numerical calculation method. From calculated outputs we have investigated structural stability of micelle, characteristics of hydrophilic and hydrophobic groups, and relation between CMC(Critical Micelle Concentraion) and group partial charge and group electronegativity of hydrophilic and hydrophobic groups for nonionic surfactants. We have known that CMC by micelle formation depends upon group partial charge and group electronegativity of hydrophilic and hydrophobic groups for surfactants. Also, the structural stability of micelle in H2O solution is related to the electric double layer by the hydrophilic group of nonionic surfactants with H atoms in water CMC is diminished by the decrease of repeating units in hydrophilic group at constant hydrophobic group and is diminished by the increments of alkyl chains in hydrophobic group at constant hydrophilic group for nonionic surfactants. In conclusion, CMC is diminished because there is no electrostatic repulsion and is diminished of Debye length by the increments of partial charge of hydrophobic group.

  • PDF

Partial Charge and CMC Characteristics of Hydrophilic and Hydrophobic Group of Surfactants (Cationic and Amphoteric Surfactant) (계면활성제의 친수.소수성 그룹의 부분전하와 CMC특성 (양이온 및 양쪽성 계면활성제))

  • 하윤식
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.403-408
    • /
    • 2000
  • On the basis of theory of Bratsch's electronegativity equalization the electronegativity equalization the group electronegativities and the group partial charges for cationic and amphoteric surface and amphoteric surfactants could be calculated using Pauling's electronegativity parameters. From calculated output we have investigated relationships between CMC(critical micelle concentration) and partial charge and group electronegativity of hydrophilic and hydrophobic groups structural stability of micelle for cationic and amphoteric surfactants. As a result CMC depends upon partial charge and electronegativity of hydrophilic group is decreased. With increasing the carbon number of hydrophilic group for cationic surfactant its partial charge is increased but CMC and its electronegativity are decreased. With increasing the carbon number of hydrophobic group for cationic and amphoteric surfactant its partial charge is increased but CMC andits electronegativity are decreased.

  • PDF

Electronegativity and CMC Characteristics of Hydrophilic and Hydrophobic Group for Surfactants (계면활성제의 친수·소수성 그룹의 전기음성도와 CMC 특성)

  • Ha, Youn-Shick;Paek, U-Hyon;Chang, Yoon-Ho
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.914-919
    • /
    • 1997
  • On the basis of theory of Bratsch's electronegativity equalization, the electronegativity equalization, the group electronegativities and the group partial charges for anionic and nonionic surfactants could be calculated by using Pauling's electronegativity parameters. From calculated results, we have investigated how CMC, hydrophilic and hydrophobic groups, group partial charge, electronegativity of hydrophilic and hydrophobic groups, structural stability of micelle for anionic and nonionic surfactants are related. It was fround that CMC depends upon group partial charge and group electronegativity of hydrophilic and hydrophobic groups of surfactants. For the anionic surfactants, negative partial charge in hydrophobic group is delocalized as the carbon number in hydrophobic group increase. So negative partial charge of hydrophilic group has very large electronegativity that is decreased. And CMC decreases as hydration ability of hydrophilic groups which decreases relatively. For the nonionic surfactant, partial charge and electronegativity in hydrophobic group increases with the increment of carbon number in hydrophobic group. And CMC decreases because electronegativity of hydrophilic group is decreased with the increment of electronegativity of hydrophilic group. However, with the increase of repeating units in hydrophilic group, the negative partial charge of hydrophilic group increases. So CMC increases because surfactants hydrate rather than form micelles in aqueous solution by the increase of hydration ability.

  • PDF

A study on the structural changes and the TSC characteristics of epoxy composites cured with acid-anhydride (산무수물 경화된 에폭시 복합체의 구조변화와 TSC특성에 관한 연구)

  • 왕종배;이준웅
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.32-41
    • /
    • 1994
  • In this study, the TSC spectroscopy has been applied to investigate the influence of structural change due to a process of curing reaction on the electrical properties of epoxy composites cured with acid-anhydride. Five TSC peaks appeared in -160-250[.deg.C]: in the low temperature region below glass transition temperature(T$\_$g/), three relaxation mode peaks due to action of side chains, substitution group or terminal groups have been observed, a peak associated with T$\_$g/, appeared in 110[.deg. C] and p peak due to ionic space charges located in 150[.deg.C]. Each peak was separated into elementary peaks by the partial polarization procedure, and the distribution of activation energy and relaxation time were analized to clearify the origin of each peak. Also, overaboundantly added hardener separated a .betha. peak near 10[.deg. C] into two peaks of .betha.$\_$1/(10.deg. C) and .betha.$\_$2/(20.deg. C) according to increasement of forming field, and the separated hardener was oxidated thermally with increasing surrounding temperatures. The expansion of the free volume need in molecular motion and the reduction of the structural packing density through thermal oxidation process increased TSC between .alpha. peak and .betha. peak and decreased T$\_$g/.

  • PDF

NMR Study on Binding Interactions of Cationic Porphyrin Derivatives with double helical $d(CGCGAATTCGCG)_2$

  • Huh, Sungho;Hong, Seokjoo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.2
    • /
    • pp.118-129
    • /
    • 2001
  • Binding interactions of cationic porphyrins, T4MPyP and TMAP with DNA oligomer d(CGCGAATTCGCG), were studied with NMR spectroscopy, W and CD spectroscopic method. Two porphyrins showed significant differences in NMR, UV and CD data upon binding to DNA. T4MPyP was considered to position more closely to DNA bases through partial intercalation as well as ionic intercalation between the positive charges of porphyrin and phosphate group of DNA at 5’-GC-3’steps. Contrast to this, TMAP was thought to bind to phosphate of DNA more or less outside of the groove.

  • PDF

Electrochemical Properties of Kaolinite in Aqueous Suspension (수용액중(水溶液中)에서의 Kaolinite 입자(粒子)의 전기화학적(電氣化學的) 성질(性質))

  • Lim, Hyung-Sik;Baham, J.;Volk, V.V.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.318-324
    • /
    • 1983
  • Electrochemical properties of Georgia kaolinite in aqueous suspension were studied by ion adsorption, potentiometric titration, and electrophoretic mobility measurements. Kaolinite in 0.001 M and 0.1 M NaCl solution showed qualitatively both pH independent and pH depender negative and positive charges through pH range 2.5-11.0 when dissolved aluminum ions from kaolinite were considered as well as $Na^+$ and $Cl^-$ as index ions. Electrophoretic mobilities (EM) of 0.02 wt. % kaolinite suspension in distilled water and 0.001 M NaCl solution were approximately constant against mobility measuring time consumed in the electrophoresis cell at different pH values, and isoelectric points(IEP) were around pH 4.7. EM values in 0.1 M NaCl solution were positive and constant against mobility measuring time below pH 4; but above pH 4, EM values were negative for the first 10 seconds followed by positive values which became approximately constant through stepped changes after 10 minutes. Hydrated cations may bind to the six- member oxygen ring sites having multiple partial negative charges on the exterior tetrahedral layer surface by both electrostatic and hydrogen bonding force while hydrated anions bind to the partially positively charged hydrogen atoms on the exterior octahedral layer surface. Parts of the aluminol groups on the exterior octahedral layer surface as well as edge faces may be involved in complex reactions and have both anion and cation exchange capacities in the electrolyte solution above pH 4.

  • PDF

Force Field Parameters for 3-Nitrotyrosine and 6-Nitrotryptophan

  • Myung, Yoo-Chan;Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2581-2587
    • /
    • 2010
  • Nitration of tyrosine and tryptophan residues is common in cells under nitrative stress. However, physiological consequences of protein nitration are not well characterized on a molecular level due to limited availability of the 3D structures of nitrated proteins. Molecular dynamics (MD) simulation can be an alternative tool to probe the structural perturbations induced by nitration. In this study we developed molecular mechanics parameters for 3-nitrotyrosine (NIY) and 6-nitrotryptophan (NIW) that are compatible with the AMBER-99 force field. Partial atomic charges were derived by using a multi-conformational restrained electrostatic potential (RESP) methodology that included the geometry optimized structures of both $\alpha$- and $\beta$-conformers of a capped tripeptide ACE-NIY-NME or ACE-NIW-NME. Force constants for bonds and angles were adopted from the generalized AMBER force field. Torsional force constants for the proper dihedral C-C-N-O and improper dihedral C-O-N-O of the nitro group in NIY were determined by fitting the torsional energy profiles obtained from quantum mechanical (QM) geometry optimization with those from molecular mechanical (MM) energy minimization. Force field parameters obtained for NIY were transferable to NIW so that they reproduced the QM torsional energy profiles of ACE-NIW-NME accurately. Moreover, the QM optimized structures of the tripeptides containing NIY and NIW were almost identical to the corresponding structures obtained from MM energy minimization, attesting the validity of the current parameter set. Molecular dynamics simulations of thioredoxin nitrated at the single tyrosine and tryptophan yielded well-behaved trajectories suggesting that the parameters are suitable for molecular dynamics simulations of a nitrated protein.